Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chin Med ; 19(1): 84, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867320

RESUMO

BACKGROUND: Low immunity and sleep disorders are prevalent suboptimal health conditions in contemporary populations, which render them susceptible to the infiltration of pathogenic factors. LJC, which has a long history in traditional Chinese medicine for nourishing the Yin and blood and calming the mind, is obtained by modifying Qiyuan paste. Dendrobium officinale Kimura et Migo has been shown to improve the immune function in sleep-deprived mice. In this study, based on the traditional Chinese medicine theory, LJC was prepared by adding D. officinale Kimura et Migo to Qiyuan paste decoction. METHODS: Indicators of Yin deficiency syndrome, such as back temperature and grip strength, were measured in each group of mice; furthermore, behavioral tests and pentobarbital sodium-induced sleep tests were performed. An automatic biochemical analyzer, enzyme-linked immunosorbent assay kit, and other methods were used to determine routine blood parameters, serum immunoglobulin (IgG, IgA, and IgM), cont (C3, C4), acid phosphatase (ACP) and lactate dehydrogenase (LDH) levels in the spleen, serum hemolysin, and delayed-type hypersensitivity (DTH) levels. In addition, serum levels of γ-aminobutyric acid (GABA) and glutamate (Glu) were detected using high-performance liquid chromatography (HPLC). Hematoxylin-eosin staining and Nissl staining were used to assess the histological alterations in the hypothalamus tissue. Western blot and immunohistochemistry were used to detect the expressions of the GABA pathway proteins GABRA1, GAD, GAT1, and GABAT1 and those of CD4+ and CD8+ proteins in the thymus and spleen tissues. RESULTS: The findings indicated that LJC prolonged the sleep duration, improved the pathological changes in the hippocampus, effectively upregulated the GABA content in the serum of mice, downregulated the Glu content and Glu/GABA ratio, enhanced the expressions of GABRA1, GAT1, and GAD, and decreased the expression of GABAT1 to assuage sleep disorders. Importantly, LJC alleviated the damage to the thymus and spleen tissues in the model mice and enhanced the activities of ACP and LDH in the spleen of the immunocompromised mice. Moreover, serum hemolysin levels and serum IgG, IgA, and IgM levels increased after LJC administration, which manifested as increased CD4+ content, decreased CD8+ content, and enhanced DTH response. In addition, LJC significantly increased the levels of complement C3 and C4, increased the number of white blood cells and lymphocytes, and decreased the percentage of neutrophils in the blood. CONCLUSIONS: LJC can lead to improvements in immunocompromised mice models with insufficient sleep. The underlying mechanism may involve regulation of the GABA/Glu content and the expression levels of GABA metabolism pathway-related proteins in the brain of mice, enhancing their specific and nonspecific immune functions.

2.
J Cosmet Dermatol ; 23(5): 1891-1904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362670

RESUMO

BACKGROUND: Dendrobium officinale flowers (DOF) have the effects of antiaging and nourishing yin, but it lacks pharmacological research on skin aging. OBJECTIVE: Confirming the role of DOF in delaying skin aging based on the "in vitro animal-human" model. METHODS: In this experiment, three kinds of free radical scavenging experiments in vitro, D-galactose-induced aging mouse model, and human antiaging efficacy test were used to test whether DOF can improve skin aging through anti-oxidation. RESULTS: In vitro experiment shows that DOF has certain scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, hydroxyl free radical, and superoxide free radical, and its IC50 is 0.2090 µg/mL, 15.020, and 1.217 mg/mL respectively. DOF can enhance the activities of T-AOC, SOD, CAT, and GSH Px in the serum of aging mice, increase the content of GSH, and reduce the content of MDA when administered with DOF of 1.0, 2.0, and 4.0 g/kg for 6 weeks. In addition, it can enhance the activity of SOD in the skin of aging mice, increase the content of Hyp, and decrease the content of MDA, activated Keap1/Nrf2 pathway in the skin of aging mice. Applying DOF with a concentration of 0.2 g/mL on the face for 8 weeks can significantly improve the skin water score and elasticity value, reduce facial wrinkles, pores, acne, and UV spots, and improve the facial brown spots and roughness. CONCLUSION: DOF can significantly improve skin aging caused by oxidative stress, and its mechanism may be related to scavenging free radicals in the body and improving skin quality.


Assuntos
Dendrobium , Flores , Estresse Oxidativo , Extratos Vegetais , Envelhecimento da Pele , Pele , Envelhecimento da Pele/efeitos dos fármacos , Animais , Dendrobium/química , Flores/química , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Humanos , Pele/efeitos dos fármacos , Pele/metabolismo , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Masculino , Feminino
3.
Biomed Pharmacother ; 143: 112141, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509822

RESUMO

AIM: Modified Suanzaoren Decoction (MSZRD) is obtained by improving Suanzaoren Decoction (SZRT), a traditional Chinese herbal prescription that has been used to treat insomnia for more than thousands of years. Our previous study showed that MSZRD can improve the gastrointestinal discomfort related insomnia by regulating Orexin-A. This study is the first study to evaluate the effects and possible mechanisms of MSZRD in mice with insomnia caused by p-chlorophenylalanine (PCPA) combined with multifactor random stimulation. METHODS: After 14 days of multifactor stimulation to ICR mice, a PCPA suspension (30 mg/mL) was injected intraperitoneally for two consecutive days to establish an insomnia model. Three different doses of MSZRD (3.6, 7.2, and 14.4 g/kg/day) were given to ICR mice for 24 days. The food intake and back temperature were measured, and behavioral tests and pentobarbital sodium-induced sleep tests were conducted. The levels of Orexin-A, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and adrenocortical hormones (CORT) in the serum and 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in hypothalamus were measured using enzyme-linked immunosorbent assay (ELISA) kits. The levels of γ-aminobutyric acid (GABA) and glutamic acid (Glu) were measured by high-performance liquid chromatography (HPLC). The expression of 5HT1A receptor (5-HTRIA) and orexin receptor 2 antibody (OX2R) was measured by Western blot (WB) and immunohistochemical staining (ICH). Hematoxylin and eosin (H&E) staining and Nissl staining were used to assess the histological changes in hypothalamus tissue. RESULTS: Of note, MSZRD can shorten the sleep latency of insomnia mice (P < 0.05, 0.01), prolonged the sleep duration of mice (P < 0.05, 0.01), and improve the circadian rhythm disorder relative to placebo-treated animals. Furthermore, MSZRD effectively increased the content of 5-HT and 5-HTR1A protein in the hypothalamus of insomnia mice (P < 0.05, 0.01), while downregulated the content of DA and NE (P < 0.05, 0.01). Importantly, serum GABA concentration was increased by treatment with MSZRD (P < 0.05), as reflected by a decreased Glu/GABA ratio (P < 0.05). Moreover, MSZRD decreased the levels of CORT, ACTH, and CRH related hormones in HPA axis (P < 0.05, 0.01). At the same time, MSZRD significantly downregulated the serum Orexin-A content in insomnia mice (P < 0.05), as well as hypothalamic OX2R expression (P < 0.05). In addition, MSZRD also improved the histopathological changes in hypothalamus in insomnia mice. CONCLUSION: MSZRD has sleep-improvement effect in mice model of insomnia. The mechanism may be that regulating the expression of Orexin-A affects the homeostasis of HPA axis and the release of related neurotransmitters in mice with insomnia.


Assuntos
Glândulas Suprarrenais/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Orexinas/metabolismo , Medicamentos Indutores do Sono/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Sono/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/fisiopatologia , Animais , Modelos Animais de Doenças , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Camundongos Endogâmicos ICR , Neurotransmissores/metabolismo , Receptores de Orexina/metabolismo , Transdução de Sinais , Distúrbios do Início e da Manutenção do Sono/metabolismo , Distúrbios do Início e da Manutenção do Sono/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA