Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611981

RESUMO

Autophagy is an evolutionarily conserved catabolic process and represents a field of research that is constantly growing [...].


Assuntos
Autofagia , Humanos
2.
Int J Biol Sci ; 18(14): 5221-5229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147477

RESUMO

Cancer is the second leading cause of mortality after cardiovascular diseases in the United States. Chemotherapy is widely used to treat cancers. Since the development of drug resistance is a major contributor towards the failure of chemotherapeutic regimens, efforts have been made to develop novel inhibitors that can combat drug resistance and sensitize cancer cells to chemotherapy. Here we investigated the anti-cancer effects of MG53, a TRIM-family protein known for its membrane repair functions. We found that rhMG53 reduced cellular proliferation of both parental and ABCB1 overexpressing colorectal carcinoma cells. Exogenous rhMG53 protein entered SW620 and SW620/AD300 cells without altering the expression of ABCB1 protein. In a mouse SW620/AD300 xenograft model, the combination of rhMG53 and doxorubicin treatment significantly inhibited tumor growth without any apparent weight loss or hematological toxicity in the animals. Our data show that MG53 has anti-proliferative function on colorectal carcinoma, regardless of their nature to drug-resistance. This is important as it supports the broader value for rhMG53 as a potential adjuvant therapeutic to treat cancers even when drug-resistance develops.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias Colorretais , Proteínas de Membrana , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Proteínas de Membrana/uso terapêutico , Camundongos , Proteínas Recombinantes/uso terapêutico , Proteínas com Motivo Tripartido
3.
Redox Biol ; 54: 102357, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679798

RESUMO

Ischemic injury to the heart induces mitochondrial dysfunction due to increasing oxidative stress. MG53, also known as TRIM72, is highly expressed in striated muscle, is secreted as a myokine after exercise, and is essential for repairing damaged plasma membrane of many tissues by interacting with the membrane lipid phosphatidylserine (PS). We hypothesized MG53 could preserve mitochondrial integrity after an ischemic event by binding to the mitochondrial-specific lipid, cardiolipin (CL), for mitochondria protection to prevent mitophagy. Fluorescent imaging and Western blotting experiments showed recombinant human MG53 (rhMG53) translocated to the mitochondria after ischemic injury in vivo and in vitro. Fluorescent imaging indicated rhMG53 treatment reduced superoxide generation in ex vivo and in vitro models. Lipid-binding assay indicated MG53 binds to CL. Transfecting cardiomyocytes with the mitochondria-targeted mt-mKeima showed inhibition of mitophagy after MG53 treatment. Overall, we show that rhMG53 treatment may preserve cardiac function by preserving mitochondria in cardiomyocytes. These findings suggest MG53's interactions with mitochondria could be an attractive avenue for developing MG53 as a targeted protein therapy for cardioprotection.


Assuntos
Proteínas de Transporte , Miócitos Cardíacos , Proteínas de Transporte/metabolismo , Humanos , Isquemia/metabolismo , Lipídeos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Reperfusão
4.
Kidney Int ; 101(1): 119-130, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757120

RESUMO

Kidney fibrosis is associated with the progression of acute kidney injury to chronic kidney disease. MG53, a cell membrane repair protein, has been shown to protect against injury to kidney epithelial cells and acute kidney injury. Here, we evaluated the role of MG53 in modulation of kidney fibrosis in aging mice and in mice with unilateral ureteral obstruction (UUO) a known model of progressive kidney fibrosis. Mice with ablation of MG53 developed more interstitial fibrosis with age than MG53-intact mice of the same age. Similarly, in the absence of MG53, kidney fibrosis was exaggerated compared to mice with intact MG53 in the obstructed kidney compared to the contralateral unobstructed kidney or the kidneys of sham operated mice. The ureteral obstructed kidneys from MG53 deficient mice also showed significantly more inflammation than ureteral obstructed kidneys from MG53 intact mice. In vitro experiments demonstrated that MG53 could enter the nuclei of proximal tubular epithelial cells and directly interact with the p65 component of transcription factor NF-κB, providing a possible explanation of enhanced inflammation in the absence of MG53. To test this, enhanced MG53 expression through engineered cells or direct recombinant protein delivery was given to mice subject to UUO. This reduced NF-κB activation and inflammation and attenuated kidney fibrosis. Thus, MG53 may have a therapeutic role in treating chronic kidney inflammation and thereby provide protection against fibrosis that leads to the chronic kidney disease phenotype.


Assuntos
Injúria Renal Aguda , Obstrução Ureteral , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Animais , Membrana Celular/metabolismo , Fibrose , Rim/patologia , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Obstrução Ureteral/metabolismo
5.
Mol Cancer ; 20(1): 118, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521423

RESUMO

BACKGROUND: Cancer cells develop resistance to chemotherapeutic intervention by excessive formation of stress granules (SGs), which are modulated by an oncogenic protein G3BP2. Selective control of G3BP2/SG signaling is a potential means to treat non-small cell lung cancer (NSCLC). METHODS: Co-immunoprecipitation was conducted to identify the interaction of MG53 and G3BP2. Immunohistochemistry and live cell imaging were performed to visualize the subcellular expression or co-localization. We used shRNA to knock-down the expression MG53 or G3BP2 to test the cell migration and colony formation. The expression level of MG53 and G3BP2 in human NSCLC tissues was tested by western blot analysis. The ATO-induced oxidative stress model was used to examine the effect of rhMG53 on SG formation. Moue NSCLC allograft experiments were performed on wild type and transgenic mice with either knockout of MG53, or overexpression of MG53. Human NSCLC xenograft model in mice was used to evaluate the effect of MG53 overexpression on tumorigenesis. RESULTS: We show that MG53, a member of the TRIM protein family (TRIM72), modulates G3BP2 activity to control lung cancer progression. Loss of MG53 results in the progressive development of lung cancer in mg53-/- mice. Transgenic mice with sustained elevation of MG53 in the bloodstream demonstrate reduced tumor growth following allograft transplantation of mouse NSCLC cells. Biochemical assay reveals physical interaction between G3BP2 and MG53 through the TRIM domain of MG53. Knockdown of MG53 enhances proliferation and migration of NSCLC cells, whereas reduced tumorigenicity is seen in NSCLC cells with knockdown of G3BP2 expression. The recombinant human MG53 (rhMG53) protein can enter the NSCLC cells to induce nuclear translation of G3BP2 and block arsenic trioxide-induced SG formation. The anti-proliferative effect of rhMG53 on NSCLC cells was abolished with knockout of G3BP2. rhMG53 can enhance sensitivity of NSCLC cells to undergo cell death upon treatment with cisplatin. Tailored induction of MG53 expression in NSCLC cells suppresses lung cancer growth via reduced SG formation in a xenograft model. CONCLUSION: Overall, these findings support the notion that MG53 functions as a tumor suppressor by targeting G3BP2/SG activity in NSCLCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Grânulos de Estresse/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Grânulos de Estresse/patologia
6.
Pflugers Arch ; 473(3): 547-556, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33474637

RESUMO

Trimeric intracellular cation (TRIC) channels have been identified as monovalent cation channels that are located in the ER/SR membrane. Two isoforms discovered in mammals are TRIC-A (TMEM38a) and TRIC-B (TMEM38b). TRIC-B ubiquitously expresses in all tissues, and TRIC-B-/- mice is lethal at the neonatal stage. TRIC-A mainly expresses in excitable cells. TRIC-A-/- mice survive normally but show abnormal SR Ca2+ handling in both skeletal and cardiac muscle cells. Importantly, TRIC-A mutations have been identified in human patients with stress-induced arrhythmia. In the past decade, important discoveries have been made to understand the structure and function of TRIC channels, especially its role in regulating intracellular Ca2+ homeostasis. In this review article, we focus on the potential roles of TRIC-A in regulating cardiac function, particularly its effects on intracellular Ca2+ signaling of cardiomyocytes and discuss the current knowledge gaps.


Assuntos
Sinalização do Cálcio/fisiologia , Homeostase/fisiologia , Canais Iônicos/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Humanos
7.
Methods Mol Biol ; 2193: 111-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32808263

RESUMO

The immune system depends on two major paths-the innate and the adaptive immunity. Macrophage, with its unique features as the first line of immune defense to engulf and digest invaders, serves as the key effector cells integrating those two paths. The dynamic plasticity of macrophage activation during wound repair, inflammation resolution, and tissue remodeling are emerging biomedical and bioengineering hot topics in immune function studies such as the various secretions of cytokines and chemokines and the signaling pathways with ligands and their cognate receptors. Better knowledge on how physical/mechanical and multicellular microenvironment on the modulation of macrophage functions will create innovative therapies to boost host defense mechanism and assist wound healing. In this, we describe an easy method to measure functions (gene expressions) of human and mouse macrophages in response to mechanical microenvironment changes by embedding isolated macrophages in polymerized hyaluronan gel with different wound matrix stiffness.


Assuntos
Inflamação/terapia , Ativação de Macrófagos/genética , Biologia Molecular/métodos , Cicatrização/genética , Imunidade Adaptativa/genética , Animais , Citocinas/genética , Humanos , Ácido Hialurônico/farmacologia , Inflamação/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Transdução de Sinais/genética , Cicatrização/fisiologia
8.
Front Physiol ; 11: 1050, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013450

RESUMO

To excrete body nitrogen waste and regulate electrolyte and fluid balance, the kidney has developed into an energy factory with only second to the heart in mitochondrial content in the body to meet the high-energy demand and regulate homeostasis. Energy supply from the renal mitochondria majorly depends on lipid metabolism, with programed enzyme systems in fatty acid ß-oxidation and Krebs cycle. Renal mitochondria integrate several metabolic pathways, including AMPK/PGC-1α, PPARs, and CD36 signaling to maintain energy homeostasis for dynamic and static requirements. The pathobiology of several kidney disorders, including diabetic nephropathy, acute and chronic kidney injuries, has been primarily linked to impaired mitochondrial bioenergetics. Such homeostatic disruption in turn stimulates a pathological adaptation, with mitochondrial enzyme system reprograming possibly leading to dyslipidemia. However, this alteration, while rescuing oncotic pressure deficit secondary to albuminuria and dissipating edematous disorder, also imposes an ominous lipotoxic consequence. Reprograming of lipid metabolism in kidney injury is essential to preserve the integrity of kidney mitochondria, thereby preventing massive collateral damage including excessive autophagy and chronic inflammation. Here, we review dyslipidemia in kidney disorders and the most recent advances on targeting mitochondrial energy metabolism as a therapeutic strategy to restrict renal lipotoxicity, achieve salutary anti-edematous effects, and restore mitochondrial homeostasis.

9.
Nat Commun ; 11(1): 3624, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681036

RESUMO

TRIM family proteins play integral roles in the innate immune response to virus infection. MG53 (TRIM72) is essential for cell membrane repair and is believed to be a muscle-specific TRIM protein. Here we show human macrophages express MG53, and MG53 protein expression is reduced following virus infection. Knockdown of MG53 in macrophages leads to increases in type I interferon (IFN) upon infection. MG53 knockout mice infected with influenza virus show comparable influenza virus titres to wild type mice, but display increased morbidity accompanied by more accumulation of CD45+ cells and elevation of IFNß in the lung. We find that MG53 knockdown results in activation of NFκB signalling, which is linked to an increase in intracellular calcium oscillation mediated by ryanodine receptor (RyR). MG53 inhibits IFNß induction in an RyR-dependent manner. This study establishes MG53 as a new target for control of virus-induced morbidity and tissue injury.


Assuntos
Influenza Humana/imunologia , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Animais , Sinalização do Cálcio/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/virologia , Interferon beta/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , RNA Interferente Pequeno , Transdução de Sinais/imunologia , Proteínas com Motivo Tripartido/genética
10.
Acta Pharmacol Sin ; 41(11): 1457-1464, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32424239

RESUMO

Mitsugumin 53 (MG53) is a tripartite motif family protein that has been reported to attenuate injury via membrane repair in different organs. Contrast-induced acute kidney injury (CI-AKI) is a common complication caused by the administration of iodinated contrast media (CM). While the cytotoxicity induced by CM leading to tubular cell death may be initiated by cell membrane damage, we wondered whether MG53 alleviates CI-AKI. This study was designed to investigate the effect of MG53 on CI-AKI and the underlying mechanism. A rat model of CI-AKI was established, and CI-AKI induced the translocation of MG53 from serum to injury sites on the renal proximal tubular (RPT) epithelia, as illustrated by immunoblot analysis and immunohistochemical staining. Moreover, pretreatment of rats with recombinant human MG53 protein (rhMG53, 2 mg/mL) alleviated iopromide-induced injury in the kidney, which was determined by measuring serum creatinine, blood urea nitrogen and renal histological changes. In vitro studies demonstrated that exposure of RPT cells to iopromide (20, 40, and 80 mg/mL) caused cell membrane injury and cell death, which were attenuated by rhMG53 (10 and 50 µg/mL). Mechanistically, MG53 translocated to the injury site on RPT cells and bound to phosphatidylserine to protect RPT cells from iopromide-induced injury. In conclusion, MG53 protects against CI-AKI through cell membrane repair and reducing cell apoptosis; therefore, rhMG53 might be a potential effective means to treat or prevent CI-AKI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Apoptose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Proteínas com Motivo Tripartido/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Membrana Celular/metabolismo , Células Epiteliais , Feminino , Humanos , Iohexol/análogos & derivados , Rim/patologia , Túbulos Renais Proximais/citologia , Masculino , Fosfatidilserinas/metabolismo , Substâncias Protetoras/metabolismo , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Proteínas com Motivo Tripartido/metabolismo
11.
Circ Res ; 126(4): 417-435, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31805819

RESUMO

RATIONALE: Trimeric intracellular cation (TRIC)-A and B are distributed to endoplasmic reticulum/sarcoplasmic reticulum intracellular Ca2+ stores. The crystal structure of TRIC has been determined, confirming the homotrimeric structure of a potassium channel. While the pore architectures of TRIC-A and TRIC-B are conserved, the carboxyl-terminal tail (CTT) domains of TRIC-A and TRIC-B are different from each other. Aside from its recognized role as a counterion channel that participates in excitation-contraction coupling of striated muscles, the physiological function of TRIC-A in heart physiology and disease has remained largely unexplored. OBJECTIVE: In cardiomyocytes, spontaneous Ca2+ waves, triggered by store overload-induced Ca2+ release mediated by the RyR2 (type 2 ryanodine receptor), develop extrasystolic contractions often associated with arrhythmic events. Here, we test the hypothesis that TRIC-A is a physiological component of RyR2-mediated Ca2+ release machinery that directly modulates store overload-induced Ca2+ release activity via CTT. METHODS AND RESULTS: We show that cardiomyocytes derived from the TRIC-A-/- (TRIC-A knockout) mice display dysregulated Ca2+ movement across sarcoplasmic reticulum. Biochemical studies demonstrate a direct interaction between CTT-A and RyR2. Modeling and docking studies reveal potential sites on RyR2 that show differential interactions with CTT-A and CTT-B. In HEK293 (human embryonic kidney) cells with stable expression of RyR2, transient expression of TRIC-A, but not TRIC-B, leads to apparent suppression of spontaneous Ca2+ oscillations. Ca2+ measurements using the cytosolic indicator Fura-2 and the endoplasmic reticulum luminal store indicator D1ER suggest that TRIC-A enhances Ca2+ leak across the endoplasmic reticulum by directly targeting RyR2 to modulate store overload-induced Ca2+ release. Moreover, synthetic CTT-A peptide facilitates RyR2 activity in lipid bilayer reconstitution system, enhances Ca2+ sparks in permeabilized TRIC-A-/- cardiomyocytes, and induces intracellular Ca2+ release after microinjection into isolated cardiomyocytes, whereas such effects were not observed with the CTT-B peptide. In response to isoproterenol stimulation, the TRIC-A-/- mice display irregular ECG and develop more fibrosis than the WT (wild type) littermates. CONCLUSIONS: In addition to the ion-conducting function, TRIC-A functions as an accessory protein of RyR2 to modulate sarcoplasmic reticulum Ca2+ handling in cardiac muscle.


Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Cardiotônicos/farmacologia , Eletrocardiografia/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fibrose/genética , Fibrose/fisiopatologia , Células HEK293 , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Canais Iônicos/química , Canais Iônicos/genética , Isoproterenol/farmacologia , Camundongos Knockout , Simulação de Acoplamento Molecular , Miocárdio/citologia , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
12.
Nat Commun ; 10(1): 4659, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604915

RESUMO

MG53 is a muscle-specific TRIM-family protein that presides over the cell membrane repair response. Here, we show that MG53 present in blood circulation acts as a myokine to facilitate tissue injury-repair and regeneration. Transgenic mice with sustained elevation of MG53 in the bloodstream (tPA-MG53) have a healthier and longer life-span when compared with littermate wild type mice. The tPA-MG53 mice show normal glucose handling and insulin signaling in skeletal muscle, and sustained elevation of MG53 in the bloodstream does not have a deleterious impact on db/db mice. More importantly, the tPA-MG53 mice display remarkable dermal wound healing capacity, enhanced muscle performance, and improved injury-repair and regeneration. Recombinant human MG53 protein protects against eccentric contraction-induced acute and chronic muscle injury in mice. Our findings highlight the myokine function of MG53 in tissue protection and present MG53 as an attractive biological reagent for regenerative medicine without interference with glucose handling in the body.


Assuntos
Proteínas de Membrana/fisiologia , Cicatrização , Animais , Cálcio/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Proteínas de Membrana/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Regeneração/genética , Biologia de Sistemas
13.
Cells ; 8(7)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330980

RESUMO

Macroautophagy (hereafter referred to as autophagy, a word derived from Greek meaning "auto-digestion") is a lysosome-dependent quality control process to degrade and turnover damaged or senescent organelles and proteins for cellular renewal [...].


Assuntos
Autofagia , Organelas/metabolismo , Proteínas/metabolismo , Homeostase , Humanos
14.
Methods Mol Biol ; 1854: 35-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28842895

RESUMO

Muscle wasting or cachexia is commonly associated with aging and many diseases such as cancer, infection, autoimmune disorders, and trauma. Decrease in muscle mass, or muscle atrophy, is often caused by dysfunction of protein proteolytic systems, such as lysosomes, which regulate protein turnover and homeostasis. Lysosomes contain many hydrolases and proteases and, thus, represent the major organelle that control protein turnover. Recently, lysosomes have emerged as a signaling hub to integrate cellular functions of nutrient sensing and metabolism, autophagy, phagocytosis, and endocytosis, which are all related to tissue homeostasis. In this chapter, we describe the protocol used to measure lysosomal proteinase (cathepsins) activity in the skeletal muscle. A better understanding of lysosomal function in muscle homeostasis is critical in developing new therapeutic approaches to prevent muscle wasting.


Assuntos
Catepsinas/análise , Lisossomos/enzimologia , Músculo Esquelético/citologia , Animais , Autofagia , Corantes Fluorescentes/química , Homeostase , Camundongos , Microscopia de Fluorescência , Músculo Esquelético/enzimologia , Transdução de Sinais
15.
Data Brief ; 22: 279-285, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30591946

RESUMO

The data presented pertain to a research article titled "Heme Oxygenase 1 Up-Regulates Glomerular Decay Accelerating Factor Expression and Minimizes Complement Deposition and Injury" (Detsika et al., 2016). The present work provides additional data on induction and immunolocalization of heme oxygenase (HO)-1 (an antioxidant enzyme) and decay-accelerating factor (DAF) (a complement activation inhibitor) in isolated rat glomeruli and in glomerular epithelial cells (podocytes) in response to Iron Protoporphyrin IX (FePP, heme), and to non-iron protoporphyrins (PPs) with varying metal functionalities (ZnPP, SnPP), including a metal-devoid PP. Induction and immuno-localization of HO-1 and DAF in response to these metalloporphyrins (MP) were assessed using western blot analyses and confocal microscopy in isolated glomeruli and in cultured podocytes. These analyses identified podocytes as a major localization site of HO-1 and DAF induction in response to the aforementioned MPs. Effects of these MPs on a key glomerular structural protein, Nephrin, are also reported. The data identify MPs most and least capable of inducing DAF and reducing Nephrin expression and provide clues into expected outcomes of animal studies assessing MP efficacy in upregulating the cytoprotective proteins HO-1 and DAF.

16.
Sci Rep ; 8(1): 1371, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358595

RESUMO

Oxygen deficiency after myocardial infarction (MI) leads to massive cardiac cell death. Protection of cardiac cells and promotion of cardiac repair are key therapeutic goals. These goals may be achieved by re-introducing oxygen into the infarcted area. Yet current systemic oxygen delivery approaches cannot efficiently diffuse oxygen into the infarcted area that has extremely low blood flow. In this work, we developed a new oxygen delivery system that can be delivered specifically to the infarcted tissue, and continuously release oxygen to protect the cardiac cells. The system was based on a thermosensitive, injectable and fast gelation hydrogel, and oxygen releasing microspheres. The fast gelation hydrogel was used to increase microsphere retention in the heart tissue. The system was able to continuously release oxygen for 4 weeks. The released oxygen significantly increased survival of cardiac cells under the hypoxic condition (1% O2) mimicking that of the infarcted hearts. It also reduced myofibroblast formation under hypoxic condition (1% O2). After implanting into infarcted hearts for 4 weeks, the released oxygen significantly augmented cell survival, decreased macrophage density, reduced collagen deposition and myofibroblast density, and stimulated tissue angiogenesis, leading to a significant increase in cardiac function.


Assuntos
Hidrogéis/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/citologia , Oxigênio/administração & dosagem , Animais , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Coração/fisiopatologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Injeções , Microesferas , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Oxigênio/farmacologia , Ratos , Resultado do Tratamento
17.
Biomacromolecules ; 18(9): 2820-2829, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731675

RESUMO

Following myocardial infarction (MI), degradation of extracellular matrix (ECM) by upregulated matrix metalloproteinases (MMPs) especially MMP-2 decreases tissue mechanical properties, leading to cardiac function deterioration. Attenuation of cardiac ECM degradation at the early stage of MI has the potential to preserve tissue mechanical properties, resulting in cardiac function increase. Yet the strategy for efficiently preventing cardiac ECM degradation remains to be established. Current preclinical approaches have shown limited efficacy because of low drug dosage allocated to the heart tissue, dose-limiting side effects, and cardiac fibrosis. To address these limitations, we have developed a MMP-2 inhibitor delivery system that can be specifically delivered into infarcted hearts at early stage of MI to efficiently prevent MMP-2-mediated ECM degradation. The system was based on an injectable, degradable, fast gelation, and thermosensitive hydrogel, and a MMP-2 specific inhibitor, peptide CTTHWGFTLC (CTT). The use of fast gelation hydrogel allowed to completely retain CTT in the heart tissue. The system was able to release low molecular weight CTT over 4 weeks possibly due to the strong hydrogen bonding between the hydrogel and CTT. The release kinetics was modulated by amount of CTT loaded into the hydrogel, and using chondroitin sulfate and heparin that can interact with CTT and the hydrogel. Both glycosaminoglycans augmented CTT release, while heparin more greatly accelerated the release. After it was injected into the infarcted hearts for 4 weeks, the released CTT efficiently prevented cardiac ECM degradation as it not only increased tissue thickness but also preserved collagen composition similar to that in the normal heart tissue. In addition, the delivery system significantly improved cardiac function. Importantly, the delivery system did not induce cardiac fibrosis. These results demonstrate that the developed MMP-2 inhibitor delivery system has potential to efficiently reduce adverse myocardial remodeling and improve cardiac function.


Assuntos
Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Hidrogéis/síntese química , Inibidores de Metaloproteinases de Matriz/farmacocinética , Infarto do Miocárdio/tratamento farmacológico , Peptídeos Cíclicos/farmacocinética , Animais , Sulfatos de Condroitina/química , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/química , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Heparina/química , Humanos , Hidrogéis/efeitos adversos , Hidrogéis/química , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/uso terapêutico , Ratos , Ratos Sprague-Dawley
18.
Adv Exp Med Biol ; 982: 529-551, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551805

RESUMO

The kidney is a vital organ that demands an extraordinary amount of energy to actively maintain the body's metabolism, plasma hemodynamics, electrolytes and water homeostasis, nutrients reabsorption, and hormone secretion. Kidney is only second to the heart in mitochondrial count and oxygen consumption. As such, the health and status of the energy power house, the mitochondria, is pivotal to the health and proper function of the kidney. Mitochondria are heterogeneous and highly dynamic organelles and their functions are subject to complex regulations through modulation of its biogenesis, bioenergetics, dynamics and clearance within cell. Kidney diseases, either acute kidney injury (AKI) or chronic kidney disease (CKD), are important clinical issues and global public health concerns with high mortality rate and socioeconomic burden due to lack of effective therapeutic strategies to cure or retard the progression of the diseases. Mitochondria-targeted therapeutics has become a major focus for modern research with the belief that maintaining mitochondria homeostasis can prevent kidney pathogenesis and disease progression. A better understanding of the cellular and molecular events that govern mitochondria functions in health and disease will potentially lead to improved therapeutics development.


Assuntos
Metabolismo Energético , Nefropatias/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Metabolismo Energético/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Nefropatias/tratamento farmacológico , Nefropatias/genética , Nefropatias/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mitofagia , Transdução de Sinais
19.
J Sci Food Agric ; 97(10): 3323-3332, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27981601

RESUMO

BACKGROUND: Among active components in Rabdosia rubescens, oridonin has been considered a key component and the most valuable compound because it has a wide range of activities beneficial to human health. To produce a high-quality oridonin extract, an alternative hyphenated procedure involving an ultrasound-assisted and supercritical carbon dioxide (HSC-CO2 ) extraction method to extract oridonin from R. rubescens was developed in this study. Fictitious solubilities of oridonin in supercritical CO2 (SC-CO2 ) with ultrasound assistance were measured by using the dynamic method at temperatures ranging from 305.15 K to 342.15 K over a pressure range of 11.5 to 33.5 MPa. RESULTS: Fictitious solubilities of oridonin at different temperatures and pressures were over the range of 2.13 × 10-6 to 10.09 × 10-6 (mole fraction) and correlated well with the density-based models, including the Bartle model, the Chrastil model, the Kumar and Johnston model and the Mendez-Santiago and Teja model, with overall average absolute relative deviations (AARDs) of 6.29%, 4.39%, 3.12% and 5.07%, respectively. CONCLUSION: Oridonin exhibits retrograde solubility behaviour in the supercritical state. Fictitious solubility data were further determined and obtained a good fit with four semi-empirical models. Simultaneously, the values of the total heat of solution, vaporisation and solvation of oridonin were estimated. © 2016 Society of Chemical Industry.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Diterpenos do Tipo Caurano/análise , Diterpenos do Tipo Caurano/isolamento & purificação , Isodon/química , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Ultrassom/métodos , Solubilidade
20.
Nutrients ; 10(1)2017 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-29295546

RESUMO

Wound care is a major healthcare expenditure. Treatment of burns, surgical and trauma wounds, diabetic lower limb ulcers and skin wounds is a major medical challenge with current therapies largely focused on supportive care measures. Successful wound repair requires a series of tightly coordinated steps including coagulation, inflammation, angiogenesis, new tissue formation and extracellular matrix remodelling. Zinc is an essential trace element (micronutrient) which plays important roles in human physiology. Zinc is a cofactor for many metalloenzymes required for cell membrane repair, cell proliferation, growth and immune system function. The pathological effects of zinc deficiency include the occurrence of skin lesions, growth retardation, impaired immune function and compromised would healing. Here, we discuss investigations on the cellular and molecular mechanisms of zinc in modulating the wound healing process. Knowledge gained from this body of research will help to translate these findings into future clinical management of wound healing.


Assuntos
Cicatrização , Zinco/metabolismo , Animais , Antioxidantes/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Estresse Oxidativo , Transdução de Sinais , Fatores de Tempo , Proteínas com Motivo Tripartido/metabolismo , Zinco/deficiência , Zinco/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA