Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 65(2): e20-e26, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031503

RESUMO

The transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) regulatory proteins (TARPs), γ2 (stargazin), γ3, γ4, γ5, γ7, and γ8, are a family of proteins that regulate AMPAR trafficking, expression, and biophysical properties that could have a role in the development of absence seizures. Here, we evaluated the expression of TARPs and AMPARs across the development of epilepsy in the genetic absence epilepsy rats from Strasbourg (GAERS) model of idiopathic generalized epilepsy (IGE) with absence seizures. Pre-epileptic (7-day-old), early epileptic (6-week-old), and chronically epileptic (16-week-old) GAERS, and age-matched male nonepileptic control rats (NEC) were used. Electroencephalographic (EEG) recordings were acquired from the 6- and 16-week-old animals to quantify seizure expression. Somatosensory cortex (SCx) and whole thalamus were collected from all the animals to evaluate TARP and AMPAR mRNA expression. Analysis of the EEG demonstrated a gradual increase in the number and duration of seizures across GAERS development. mRNA expression of the TARPs γ2, γ3, γ4, γ5, and γ8 in the SCx, and γ4 and γ5 in the thalamus, increased as the seizures started and progressed in the GAERS compared to NEC. There was a temporal association between increased TARP expression and seizures in GAERS, highlighting TARPs as potential targets for developing novel treatments for IGE with absence seizures.


Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Ratos , Masculino , Animais , Epilepsia Tipo Ausência/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Convulsões/genética , RNA Mensageiro , Imunoglobulina E , Modelos Animais de Doenças
2.
Epilepsia Open ; 8(4): 1523-1531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805809

RESUMO

OBJECTIVES: Growing evidence demonstrates a relationship between epilepsy and the circadian system. However, relatively little is known about circadian function in disease states, such as epilepsy. This study aimed to characterize brain and peripheral core circadian clock gene expression in rat models of genetic and acquired epilepsy. METHODS: For the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) study, we used 40 GAERS and 40 non-epileptic control (NEC) rats. For the kainic acid status epilepticus (KASE) study, we used 40 KASE and 40 sham rats. Rats were housed in a 7 am:7 pm light-dark cycle. Hypothalamus, hippocampus, liver, and small intestine samples were collected every 3 h throughout the light period. We then assessed core diurnal clock gene expression of per1, cry1, clock, and bmal1. RESULTS: In the GAERS rats, all tissues exhibited significant changes in clock gene expression (P < 0.05) when compared to NEC. In the KASE rats, there were fewer effects of the epileptic condition in the hypothalamus, hippocampus, or small intestine (P > 0.05) compared with shams. SIGNIFICANCE: These results indicate marked diurnal disruption to core circadian clock gene expression in rats with both generalized and focal chronic epilepsy. This could contribute to epileptic symptomology and implicate the circadian system as a viable target for future treatments.


Assuntos
Relógios Circadianos , Epilepsia Tipo Ausência , Ratos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Encéfalo/metabolismo , Expressão Gênica
3.
Neurobiol Dis ; 184: 106217, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37391087

RESUMO

RATIONALE: Low-voltage-activated or T-type Ca2+ channels play a key role in the generation of seizures in absence epilepsy. We have described a homozygous, gain of function substitution mutation (R1584P) in the CaV3.2 T-type Ca2+ channel gene (Cacna1h) in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The non-epileptic control (NEC) rats, derived from the same original Wistar strains as GAERS but selectively in-breed not to express seizures, are null for the R1584P mutation. To study the effects of this mutation in rats who otherwise have a GAERS or NEC genetic background, we bred congenic GAERS-Cacna1hNEC (GAERS null for R1584P mutation) and congenic NEC-Cacna1hGAERS (NEC homozygous for R1584P mutation) and evaluated the seizure and behavioral phenotype of these strains in comparison to the original GAERS and NEC strains. METHODS: To evaluate seizure expression in the congenic strains, EEG electrodes were implanted in NEC, GAERS, GAERS-Cacna1hNEC without the R1584P mutation, and NEC-Cacna1hGAERS with the R1584P mutation rats. In the first study, continuous EEG recordings were acquired from week 4 (when seizures begin to develop in GAERS) to week 14 of age (when GAERS display hundreds of seizures per day). In the second study, the seizure and behavioral phenotype of GAERS and NEC-Cacna1hGAERS strains were evaluated during young age (6 weeks of age) and adulthood (16 weeks of age) of GAERS, NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The Open field test (OFT) and sucrose preference test (SPT) were performed to evaluate anxiety-like and depressive-like behavior, respectively. This was followed by EEG recordings at 18 weeks of age to quantify the seizures, and spike-wave discharge (SWD) cycle frequency. At the end of the study, the whole thalamus was collected for T-type calcium channel mRNA expression analysis. RESULTS: GAERS had a significantly shorter latency to first seizures and an increased number of seizures per day compared to GAERS-Cacna1hNEC. On the other hand, the presence of the R1584P mutation in the NEC-Cacna1hGAERS was not enough to generate spontaneous seizures in their seizure-resistant background. 6 and 16-week-old GAERS and GAERS-Cacna1hNEC rats showed anxiety-like behavior in the OFT, in contrast to NEC and NEC-Cacna1hGAERS. Results from the SPT showed that the GAERS developed depressive-like in the SPT compared to GAERS-Cacna1hNEC, NEC, and NEC-Cacna1hGAERS. Analysis of the EEG at 18 weeks of age showed that the GAERS had an increased number of seizures per day, increased total seizure duration and a higher cycle frequency of SWD relative to GAERS-Cacna1hNEC. However, the average seizure duration was not significantly different between strains. Quantitative real-time PCR showed that the T-type Ca2+ channel isoform CaV3.2 channel expression was significantly increased in GAERS compared to NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The presence of the R1584P mutation increased the total ratio of CaV3.2 + 25/-25 splice variants in GAERS and NEC-Cacna1hGAERS compared to NEC and GAERS-Cacna1hNEC. DISCUSSION: The data from this study demonstrate that the R1584P mutation in isolation on a seizure-resistant NEC genetic background was insufficient to generate absence seizures, and that a GAERS genetic background can cause seizures even without the mutation. However, the study provides evidence that the R1584P mutation acts as a modulator of seizures development and expression, and depressive-like behavior in the SPT, but not the anxiety phenotype of the GAERS model of absence epilepsy.


Assuntos
Canais de Cálcio Tipo T , Epilepsia Tipo Ausência , Animais , Ratos , Canais de Cálcio Tipo T/metabolismo , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/genética , Mutação/genética , Ratos Wistar , Convulsões/genética
4.
J Transl Med ; 20(1): 406, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064418

RESUMO

BACKGROUND: Glucocorticoid signalling is closely related to both epilepsy and associated cognitive impairment, possibly through mechanisms involving neuronal apoptosis. As a critical enzyme for glucocorticoid action, the role of 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) in epileptogenesis and associated cognitive impairment has not previously been studied. METHODS: We first investigated the expression of 11ß-HSD1 in the pentylenetetrazole (PTZ) kindling mouse model of epilepsy. We then observed the effect of overexpressing 11ß-HSD1 on the excitability of primary cultured neurons in vitro using whole-cell patch clamp recordings. Further, we assessed the effects of adeno-associated virus (AAV)-induced hippocampal 11ß-HSD1 knockdown in the PTZ model, conducting behavioural observations of seizures, assessment of spatial learning and memory using the Morris water maze, and biochemical and histopathological analyses. RESULTS: We found that 11ß-HSD1 was primarily expressed in neurons but not astrocytes, and its expression was significantly (p < 0.05) increased in the hippocampus of PTZ epilepsy mice compared to sham controls. Whole-cell patch clamp recordings showed that overexpression of 11ß-HSD1 significantly decreased the threshold voltage while increasing the frequency of action potential firing in cultured hippocampal neurons. Hippocampal knockdown of 11ß-HSD1 significantly reduced the severity score of PTZ seizures and increased the latent period required to reach the fully kindled state compared to control knockdown. Knockdown of 11ß-HSD1 also significantly mitigated the impairment of spatial learning and memory, attenuated hippocampal neuronal damage and increased the ratio of Bcl-2/Bax, while decreasing the expression of cleaved caspase-3. CONCLUSIONS: 11ß-HSD1 participates in the pathogenesis of both epilepsy and the associated cognitive impairment by elevating neuronal excitability and contributing to apoptosis and subsequent hippocampal neuronal damage. Inhibition of 11ß-HSD1, therefore, represents a promising strategy to treat epilepsy and cognitive comorbidity.


Assuntos
Disfunção Cognitiva , Epilepsia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Envelhecimento , Animais , Apoptose , Disfunção Cognitiva/complicações , Epilepsia/complicações , Epilepsia/genética , Glucocorticoides , Aprendizagem em Labirinto/fisiologia , Camundongos , Convulsões/genética
5.
J Alzheimers Dis Rep ; 5(1): 479-495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368633

RESUMO

BACKGROUND: Current understanding of amyloid-ß protein (Aß) aggregation and toxicity provides an extensive list of drugs for treating Alzheimer's disease (AD); however, one of the most promising strategies for its treatment has been tri-peptides. OBJECTIVE: The aim of this study is to examine those tri-peptides, such as Arg-Arg-Try (RRY), which have the potential of Aß1-42 aggregating inhibition and Aß clearance. METHODS: In the present study, in silico, in vitro, and in vivo studies were integrated for screening tri-peptides binding to Aß, then evaluating its inhibition of aggregation of Aß, and finally its rescuing cognitive deficit. RESULTS: In the in silico simulations, molecular docking and molecular dynamics determined that seven top-ranking tri-peptides could bind to Aß1-42 and form stable complexes. Circular dichroism, ThT assay, and transmission electron microscope indicated the seven tri-peptides might inhibit the aggregation of Aß1-42 in vitro. In the in vivo studies, Morris water maze, ELISA, and Diolistic staining were used, and data showed that RRY was capable of rescuing the Aß1-42-induced cognitive deficit, reducing the Aß1-42 load and increasing the dendritic spines in the transgenic mouse model. CONCLUSION: Such converging outcomes from three consecutive studies lead us to conclude that RRY is a preferred inhibitor of Aß1-42 aggregation and treatment for Aß-induced cognitive deficit.

6.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456185

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. An increasing body of evidence describes an elevated incidence of epilepsy in patients with AD, and many transgenic animal models of AD also exhibit seizures and susceptibility to epilepsy. However, the biological mechanisms that underlie the occurrence of seizure or increased susceptibility to seizures in AD is unknown. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that regulates various cellular signaling pathways, and plays a crucial role in the pathogenesis of AD. It has been suggested that GSK-3 might be a key factor that drives epileptogenesis in AD by interacting with the pathological hallmarks of AD, amyloid precursor protein (APP) and tau. Furthermore, seizures may also contribute to the progression of AD through GSK-3. In this way, GSK-3 might be involved in initiating a vicious cycle between AD and seizures. This review aims to summarise the possible role of GSK-3 in the link between AD and seizures. Understanding the role of GSK-3 in AD-associated seizures and epilepsy may help researchers develop new therapeutic approach that can manage seizure and epilepsy in AD patients as well as decelerate the progression of AD.


Assuntos
Doença de Alzheimer/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Convulsões/metabolismo , Doença de Alzheimer/complicações , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Humanos , Convulsões/etiologia , Proteínas tau/metabolismo
7.
Neurobiol Aging ; 36(5): 1792-807, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25771396

RESUMO

Alzheimer's disease (AD) is characterized by amyloid ß (Aß) peptide aggregation and cholinergic neurodegeneration. Therefore, in this paper, we examined silibinin, a flavonoid extracted from Silybum marianum, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aß peptide aggregation for AD treatment. To achieve this, we used molecular docking and molecular dynamics simulations to examine the affinity of silibinin with Aß and AChE in silico. Next, we used circular dichroism and transmission electron microscopy to study the anti-Aß aggregation capability of silibinin in vitro. Moreover, a Morris Water Maze test, enzyme-linked immunosorbent assay, immunohistochemistry, 5-bromo-2-deoxyuridine double labeling, and a gene gun experiment were performed on silibinin-treated APP/PS1 transgenic mice. In molecular dynamics simulations, silibinin interacted with Aß and AChE to form different stable complexes. After the administration of silibinin, AChE activity and Aß aggregations were down-regulated, and the quantity of AChE also decreased. In addition, silibinin-treated APP/PS1 transgenic mice had greater scores in the Morris Water Maze. Moreover, silibinin could increase the number of newly generated microglia, astrocytes, neurons, and neuronal precursor cells. Taken together, these data suggest that silibinin could act as a dual inhibitor of AChE and Aß peptide aggregation, therefore suggesting a therapeutic strategy for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase , Fitoterapia , Agregação Patológica de Proteínas/metabolismo , Silimarina/farmacologia , Silimarina/uso terapêutico , Doença de Alzheimer/fisiopatologia , Animais , Giro Denteado/metabolismo , Giro Denteado/fisiologia , Feminino , Masculino , Camundongos Transgênicos , Silybum marianum/química , Regeneração Nervosa/efeitos dos fármacos , Ratos Sprague-Dawley , Silibina , Silimarina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA