RESUMO
Doxorubicin (DOX) is mostly utilized as a wide range of antitumor anthracycline to treat different cancers. The severe antagonistic impacts of DOX on cardiotoxicity constrain its clinical application. Many mechanisms are involved in cardiac toxicity induced by DOX in the human body. Mitochondria is a central part of fatty acid and glucose metabolism. Thus, impaired mitochondrial metabolism can increase heart failure risk, which can play a vital role in cardiomyocyte mitochondrial dysfunction. This study aimed to assess the possible cardioprotective effect of water-extracted Artemisia argyi (AA) against the side effect of DOX in H9c2 cells and whether these protective effects are mediated through IGF-IIR/Drp1/GATA4 signaling pathways. Although several studies proved that AA extract has benefits for various diseases, its cardiac effects have not yet been identified. The H9c2 cells were exposed to 1 µM to establish a model of cardiac toxicity. The results revealed that water-extracted AA could block the expression of IGF-IIR/calcineurin signaling pathways induced by DOX. Notably, our results also showed that AA treatment markedly attenuated Akt phosphorylation and cleaved caspase 3, and the nuclear translocation markers NFATC3 and p-GATA4. Using actin staining for hypertrophy, we determined that AA can reduce the effect of mitochondrial reactive oxygen species and cell size. These findings suggest that water-extracted AA could be a suitable candidate for preventing DOX-induced cardiac damage.
RESUMO
Inflammation is an intrinsic protective mechanism against various forms of cellular injuries in humans; however, its undesired activation results in tissue damage and cell death. The onset of chronic inflammation and oxidative stress are the key characteristics of autoimmune inflammatory diseases such as rheumatoid arthritis (RA), for which an effective treatment is yet to be developed. Therefore, in this study, we investigated the protective effects and molecular mechanisms of a novel herbal preparation, Jing-Si herbal tea (JS), against H2O2-induced inflammation and cellular damage in HIG-82 synoviocytes. We found that JS did not show any significant alterations in cell viability at <188 µg/mL; however, a cytotoxic effect was observed at 188-1883 µg/mL concentrations tested. We found that expressions of inflammation associated extracellular matrix (ECM)-degrading proteases MMP-13, ADAMTS-2, -8, and -17 were abnormally enhanced under H2O2-induced pathological oxidative stress (ROS) in HIG-82 cells. Interestingly, JS treatment not only reduced the ROS levels but also significantly repressed the protein expressions of collagen degrading proteases in a dose-dependent manner. Treatment with JS showed enhanced cell viability against H2O2-induced toxic ROS levels. The expressions of cell protective aggrecan, Collagen II, and Bcl-2 were increased, whereas MMP-13, ADAMTS-2, Cytochrome C, and cleaved Caspase 3 were decreased by JS under inflammatory agents H2O2, MIA, LPS, and TNF-α treatment, respectively, in HIG-82 cells. Interestingly, the cytoprotective effect of JS treatment was attributed to a decreased mitochondrial localization of Bax and a reduction of Cytochrome C release into the cytoplasm of H2O2-treated HIG-82 cells. Collectively, our results suggest a novel protective mechanism of JS for RA treatment, which could be potentially applied as a complementary treatment or as an alternative therapeutic approach to mitigate inflammatory diseases.
RESUMO
Stem cells have the potential to replace damaged or defective cells and assist in the development of treatments for neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease. iPS cells derived from patient-specific somatic cells are not only ethically acceptable, but they also avoid complications relating to immune rejection. Currently, researchers are developing stem cell-based therapies for PD using induced pluripotent stem (iPS) cells. iPS cells can differentiate into cells from any of the three germ layers, including neural stem cells (NSCs). Transplantation of neural stem cells (NSCs) is an emerging therapy for treating neurological disorders by restoring neuronal function. Nevertheless, there are still challenges associated with the quality and source of neural stem cells. This issue can be addressed by genetically edited iPS cells. In this study, shRNA was used to knock down the expression of mutant α-synuclein (SNCA) in iPS cells that were generated from SNCA A53T transgenic mice, and these iPS cells were differentiated to NSCs. After injecting these NSCs into SNCA A53T mice, the therapeutic effects of these cells were evaluated. We found that the transplantation of neural stem cells produced from SNCA A53T iPS cells with knocking down SNCA not only improved SNCA A53T mice coordination abilities, balance abilities, and locomotor activities but also significantly prolonged their lifespans. The results of this study suggest an innovative therapeutic approach that combines stem cell therapy and gene therapy for the treatment of Parkinson's disease.
RESUMO
BACKGROUND: Blood-brain barrier (BBB) breakdown is associated with neurodegeneration and cognitive impairment. Cerebral small vessel disease (CSVD) is also common in idiopathic normal pressure hydrocephalus (iNPH). Biomarkers in the cerebrospinal fluid (CSF) may reflect the severity of neuropathological damage and indicate a relationship between BBB integrity and iNPH and its surgical outcome. We investigated the association of CSVD and comorbidity-related CSF biomarkers with shunt outcomes in iNPH. MATERIALS AND METHODS: This prospective cohort study recruited 53 patients with iNPH, who were subgrouped by CSVD severity. CSF proteins were analyzed, including soluble platelet-derived growth factor receptor-ß (sPDGFR-ß), Alzheimer's disease biomarkers, neurofilament light chain (NfL), and triggering receptor expressed on myeloid cells 2 (Trem2). We assessed symptom improvement, investigated its association with biomarkes levels, calculated protein cutoffs for surgical outcomes using receiver operating characteristic (ROC) curves, and compared model predictions using different proteins using hierarchical regression analysis. RESULTS: Among patients with iNPH, 74% had comorbid CSVD. Patients with severe CSVD exhibited significantly higher sPDGFR-ß levels (P=0.019) and better postoperative performance (ß=0.332, t=2.174, P=0.039; r=0.573, P=0.001). Analysis of the predictive potential of the biomarkers showed that sPDGFR-ß was predictive of surgical outcomes (area under curve=0.82, sensitivity=66.8%, specificity=94.7%). A Comparison of the models revealed a greater effect of sPDGFR-ß (Adjusted R2=0.247, ∆R2=0.160, ∆F(1, 37)=8.238, P=0.007) on cognitive improvement. CONCLUSION: This study highlighted the relevance of CSF biomarkers in assessing CSVD severity and predicting iNPH surgical outcome. CSF shunt surgery may provide an alternative treatment for neurodegenerative diseases with BBB breakdown and dysfunctional CSF clearance.
RESUMO
Interobserver variations in the pathology of common astrocytic tumors impact diagnosis and subsequent treatment decisions. This study leveraged a residual neural network-50 (ResNet-50) in digital pathological images of diffuse astrocytoma, anaplastic astrocytoma, and glioblastoma to recognize characteristic pathological features and perform classification at the patch and case levels with identification of incorrect predictions. In addition, cellularity and nuclear morphological features, including axis ratio, circularity, entropy, area, irregularity, and perimeter, were quantified via a hybrid task cascade (HTC) framework and compared between different characteristic pathological features with importance weighting. A total of 95 cases, including 15 cases of diffuse astrocytoma, 11 cases of anaplastic astrocytoma, and 69 cases of glioblastoma, were collected in Taiwan Hualien Tzu Chi Hospital from January 2000 to December 2021. The results revealed that an optimized ResNet-50 model could recognize characteristic pathological features at the patch level and assist in diagnosis at the case level with accuracies of 0.916 and 0.846, respectively. Incorrect predictions were mainly due to indistinguishable morphologic overlap between anaplastic astrocytoma and glioblastoma tumor cell area, zones of scant vascular lumen with compact endothelial cells in the glioblastoma microvascular proliferation area mimicking the glioblastoma tumor cell area, and certain regions in diffuse astrocytoma with too low cellularity being misrecognized as the glioblastoma necrosis area. Significant differences were observed in cellularity and each nuclear morphological feature among different characteristic pathological features. Furthermore, using the extreme gradient boosting (XGBoost) algorithm, we found that entropy was the most important feature for classification, followed by cellularity, area, circularity, axis ratio, perimeter, and irregularity. Identifying incorrect predictions provided valuable feedback to machine learning design to further enhance accuracy and reduce errors in classification. Moreover, quantifying cellularity and nuclear morphological features with importance weighting provided the basis for developing an innovative scoring system to achieve objective classification and precision diagnosis among common astrocytic tumors.
RESUMO
The most effective drug, doxorubicin (DOX), is widely used worldwide for clinical application as an anticancer drug. DOX-induced cytotoxicity is characterized by mitochondrial dysfunction. There is no alternative treatment against DOX-induced cardiac damage despite intensive research in the present decades. Ohwia caudata has emerged as a potential herbal remedy that prevents from DOX-induced cytotoxicity owing to its pharmacological action of sustaining mitochondrial dynamics by attenuating oxidative stress and inducing cellular longevity. However, its underlying mechanisms are unknown. The novel treatment provided here depends on new evidence from DOX-treated H9c2 cells, which significantly enhanced insulin-like growth factor (IGF) II receptor (IGF-IIR) pathways that activated calcineurin and phosphorylated dynamin-related protein 1 (p-Drp1) at ser616 (p-Drp1[ser616]); cells undergo apoptosis due to these factors, which translocate to mitochondria and disrupt their function and integrity, and in terms of herbal medicine treatment, which significantly blocked these phenomena. Thus, our findings indicate that maintaining integrity of mitochondria is an essential element in lowering DOX-induced cytotoxicity, which further emphasizes that our herbal medicine can successfully block IGF-IIR pathways and could potentially act as an alternative mechanism in terms of cardioprotective against doxorubicin.
Assuntos
Doxorrubicina , Dinaminas , Dinâmica Mitocondrial , Transdução de Sinais , Doxorrubicina/farmacologia , Doxorrubicina/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Animais , Dinaminas/metabolismo , Ratos , Receptor IGF Tipo 2/metabolismo , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Cardiotoxicidade/etiologia , Linhagem Celular , Extratos Vegetais/farmacologia , Extratos Vegetais/químicaRESUMO
Purpose: Exosomes are membrane vesicles secreted by various cells and play a crucial role in intercellular communication. They can be excellent delivery vehicles for oligonucleotide drugs, such as microRNAs, due to their high biocompatibility. MicroRNAs have been shown to be more stable when incorporated into exosomes; however, the lack of targeting and immune evasion is still the obstacle to the use of these microRNA-containing nanocarriers in clinical settings. Our goal was to produce functional exosomes loaded with target ligands, immune evasion ligand, and oligonucleotide drug through genetic engineering in order to achieve more precise medical effects. Methods: To address the problem, we designed engineered exosomes with exogenous cholecystokinin (CCK) or somatostatin (SST) as the targeting ligand to direct the exosomes to the brain, as well as transduced CD47 proteins to reduce the elimination or phagocytosis of the targeted exosomes. MicroRNA-29b-2 was the tested oligonucleotide drug for delivery because our previous research showed that this type of microRNA was capable of reducing presenilin 1 (PSEN1) gene expression and decreasing the ß-amyloid accumulation for Alzheimer's disease (AD) in vitro and in vivo. Results: The engineered exosomes, containing miR29b-2 and expressing SST and CD47, were produced by gene-modified dendritic cells and used in the subsequent experiments. In comparison with CD47-CCK exosomes, CD47-SST exosomes showed a more significant increase in delivery efficiency. In addition, CD47-SST exosomes led to a higher delivery level of exosomes to the brains of nude mice when administered intravenously. Moreover, it was found that the miR29b-2-loaded CD47-SST exosomes could effectively reduce PSEN1 in translational levels, which resulted in an inhibition of beta-amyloid oligomers production both in the cell model and in the 3xTg-AD animal model. Conclusion: Our results demonstrated the feasibility of the designed engineered exosomes. The application of this exosomal nanocarrier platform can be extended to the delivery of other oligonucleotide drugs to specific tissues for the treatment of diseases while evading the immune system.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Antígeno CD47 , MicroRNAs , Presenilina-1 , Receptores de Somatostatina , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , MicroRNAs/administração & dosagem , MicroRNAs/genética , MicroRNAs/farmacologia , Presenilina-1/genética , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , SomatostatinaRESUMO
Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem cells can potentially be used to reconstruct various tissues. They possess significant versatility and alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has therapeutic effects against several illnesses. However, studies on whether O. caudata has therapeutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal stem cells. Using 0.1 µM doxorubicin, we induced aging in human adipose-derived mesenchymal stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in hADMSCs. These ï¬ndings indicated that the O. caudata extract exhibited anti-aging properties that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring the self-renewal ability and multipotency of aging hADMSCs.
RESUMO
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting approximately 1% of the global population, with a higher prevalence in women than in men. Chronic inflammation and oxidative stress play pivotal roles in the pathogenesis of RA. Anethole, a prominent compound derived from fennel (Foeniculum vulgare), possesses a spectrum of therapeutic properties, including anti-arthritic, anti-inflammatory, antioxidant, and tumor-suppressive effects. However, its specific impact on RA remains underexplored. This study sought to uncover the potential therapeutic value of anethole in treating RA by employing an H2 O2 -induced inflammation model with HIG-82 synovial cells. Our results demonstrated that exposure to H2 O2 induced the inflammation and apoptosis in these cells. Remarkably, anethole treatment effectively countered these inflammatory and apoptotic processes triggered by H2 O2 . Moreover, we identified the aquaporin 1 (AQP1) and protein kinase A (PKA) pathway as critical regulators of inflammation and apoptosis. H2 O2 stimulation led to an increase in the AQP1 expression and a decrease in p-PKA-C, contributing to cartilage degradation. Conversely, anethole not only downregulated the AQP1 expression but also activated the PKA pathway, effectively suppressing cell inflammation and apoptosis. Furthermore, anethole also inhibited the enzymes responsible for cartilage degradation. In summary, our findings highlight the potential of anethole as a therapeutic agent for mitigating H2 O2 -induced inflammation and apoptosis in synovial cells, offering promising prospects for future RA treatments.
Assuntos
Artrite Reumatoide , Sinoviócitos , Masculino , Humanos , Feminino , Sinoviócitos/metabolismo , Aquaporina 1 , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inflamação/patologia , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Proliferação de CélulasRESUMO
Noninvasive lung drug delivery is critical for treating respiratory diseases. Pluronic-based copolymers have been used as multifunctional materials for medical and biological applications. However, the Pluronic F127-based hydrogel is rapidly degraded, adversely affecting the mechanical stability for prolonged drug release. Therefore, this study designed two thermosensitive copolymers by modifying the Pluronic F127 terminal groups with carboxyl (ADF127) or amine groups (EDF127) to improve the viscosity and storage modulus of drug formulations. ß-alanine and ethylenediamine were conjugated at the terminal of Pluronic F127 using a two-step acetylation process, and the final copolymers were characterized using 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectra. According to the 1H NMR spectra, Pluronic F127 was functionalized to form ADF127 and EDF127 with 85 % and 71 % functionalization degrees, respectively. Rheological studies revealed that the ADF127 (15 wt%) and EDF127 (15 wt%) viscosities increased from 1480 Pa.s (Pluronic F127) to 1700 Pa.s and 1800 Pa.s, respectively. Furthermore, the elastic modulus of ADF127 and EDF127 increased, compared with that of native Pluronic F127 with the addition of 5 % mucin, particularly for ADF127, thereby signifying the stronger adhesive nature of ADF127 and EDF127 with mucin. Additionally, ADF127 and EDF127 exhibited a decreased gelation temperature, decreasing from 33 °C (Pluronic F127 at 15 wt%) to 24 °C. Notably, the in vitro ADF127 and EDF127 drug release was prolonged (95 %; 48 h) by the hydrogel encapsulation of the liposome-Bdph combined with mucin, and the intermolecular hydrogen bonding between the mucin and the hydrogel increased the retention time and stiffness of the hydrogels. Furthermore, ADF127 and EDF127 incubated with NIH-3T3 cells exhibited biocompatibility within 2 mg/mL, compared with Pluronic F127. The nasal administration method was used to examine the biodistribution of the modified hydrogel carrying liposomes or exosomes with fluorescence using the IVIS system. Drug accumulation in the lungs decreased in the following order: ADF127 > EDF127 > liposomes or exosomes alone. These results indicated that the carboxyl group-modified Pluronic F127 enabled well-distributed drug accumulation in the lungs, which is beneficial for intranasal administration routes in treating diseases such as lung fibrosis.
Assuntos
Lipossomos , Poloxâmero , Camundongos , Animais , Poloxâmero/química , Hidrogéis , Mucinas , Distribuição Tecidual , Polímeros , PulmãoRESUMO
A patient-friendly and efficient treatment method for patients with spinocerebellar ataxia type 3 (SCA3) was provided through a nose-to-brain liposomal system. Initially, PGK1 was overexpressed in HEK 293-84Q-GFP diseased cells (HEK 293-84Q-GFP-PGK1 cells) to confirm its effect on the diseased protein polyQ. A decrease in polyQ expression was demonstrated in HEK 293-84Q-GFP-PGK1 cells compared to HEK 293-84Q-GFP parental cells. Subsequently, PGK1 was encapsulated in a liposomal system to evaluate its therapeutic efficiency in SCA3. The optimized liposomes exhibited a significantly enhanced positive charge, facilitating efficient intracellular protein delivery to the cells. The proteins were encapsulated within the liposomes using an optimized method involving a combination of heat shock and sonication. The liposomal system was further demonstrated to be deliverable to the brain via intranasal administration. PGK1/liposomes were intranasally delivered to SCA3 mice, which subsequently exhibited an amelioration of motor impairment, as assessed via the accelerated rotarod test. Additionally, fewer shrunken morphology Purkinje cells and a reduction in polyQ expression were observed in SCA3 mice that received PGK1/liposomes but not in the untreated, liposome-only, or PGK1-only groups. This study provides a non-invasive route for protein delivery and greater delivery efficiency via the liposomal system for treating neurodegenerative diseases.
Assuntos
Administração Intranasal , Encéfalo , Lipossomos , Doença de Machado-Joseph , Fosfoglicerato Quinase , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Células HEK293 , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Peptídeos/administração & dosagem , Peptídeos/química , Fosfoglicerato Quinase/farmacologia , Fosfoglicerato Quinase/uso terapêuticoRESUMO
Aim: Spinal cord injury (SCI) can cause severe disability. Several clinical trials of stem-cell based therapies are ongoing. We describe our experience of bone marrow mesenchymal stem cell (BMSC) therapy in a patient with complete SCI in the chronic stage. Case report: A 25-year-old man with complete SCI at T6 level presented with paraplegia for 5 years. We transplanted autologous BMSCs intramedullary. After 12 months follow-up, his Barthel index score was noticeably improved from severe to moderate dependency, and the sensation level improved from T7 to S5, but no improvement of motor function. Conclusion: Autologous BMSCs are potentially safe for patients with complete SCI in the chronic stage and may improve neurological function and quality of life.
Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Masculino , Humanos , Adulto , Qualidade de Vida , Traumatismos da Medula Espinal/terapia , Implantação do Embrião , Células da Medula Óssea , Medula EspinalRESUMO
Exosome therapy is a novel trend in regeneration medicine. However, identifying a suitable biomarker that can associate the therapeutic efficacy of exosomes with SCA3/MJD is essential. In this study, parental cells were preconditioned with butylidenephthalide (Bdph) for exosome preparation to evaluate the therapeutic effect of SCA3/MJD. The therapeutic agent hsa-miRNA-6780-5p was enriched up to 98-fold in exosomes derived from butylidenephthalide (Bdph)-preconditioned human olfactory ensheathing cells (hOECs) compared with that in naïve hOECs exosomes. The particle sizes of exosomes derived from naïve hOECs and those derived from hOECs preconditioned with Bdph were approximately 113.0 ± 3.5 nm and 128.9 ± 0.7 nm, respectively. A liposome system was used to demonstrate the role of hsa-miRNA-6780-5p, wherein hsa-miRNA-6780-5p was found to enhance autophagy and inhibit the expression of spinocerebellar ataxia type 3 (SCA3) disease proteins with the polyglutamine (polyQ) tract. Exosomes with enriched hsa-miRNA-6780-5p were further applied to HEK-293-84Q cells, leading to decreased expression of polyQ and increased autophagy. The results were reversed when 3MA, an autophagy inhibitor, was added to the cells treated with hsa-miRNA-6780-5p-enriched exosomes, indicating that the decreased polyQ expression was modulated via autophagy. SCA3 mice showed improved motor coordination behavior when they intracranially received exosomes enriched with hsa-miRNA-6780-5p. SCA3 mouse cerebellar tissues treated with hsa-miRNA-6780-5p-enriched exosomes showed decreased expression of polyQ and increased expression of LC3II/I, an autophagy marker. In conclusion, our findings can serve as a basis for developing an alternative therapeutic strategy for SCA3 disease treatment using miRNA-enriched exosomes derived from chemically preconditioned cells.
Assuntos
Exossomos , Doença de Machado-Joseph , MicroRNAs , Humanos , Camundongos , Animais , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/metabolismo , Exossomos/metabolismo , Células HEK293 , MicroRNAs/metabolismoRESUMO
Ohwia caudata (Thunb.) H. Ohashi (Leguminosae) also called as "Evergreen shrub" and Artemisia argyi H.Lév. and Vaniot (Compositae) also named as "Chinese mugwort" those two-leaf extracts frequently used as herbal medicine, especially in south east Asia and eastern Asia. Anthracyclines such as doxorubicin (DOX) are commonly used as effective chemotherapeutic drugs in anticancer therapy around the world. However, chemotherapy-induced cardiotoxicity, dilated cardiomyopathy, and congestive heart failure are seen in patients who receive DOX therapy, with the mechanisms underlying DOX-induced cardiac toxicity remaining unclear. Mitochondrial dysfunction, oxidative stress, inflammatory response, and cardiomyocytes have been shown to play crucial roles in DOX-induced cardiotoxicity. Isoliquiritigenin (ISL, 10 mg/kg) is a bioactive flavonoid compound with protective effects against inflammation, neurodegeneration, cancer, and diabetes. Here, in this study, our aim is to find out the Artemisia argyi (AA) and Ohwia caudata (OC) leaf extract combination with Isoliquiritigenin in potentiating and complementing effect against chemo drug side effect to ameliorate cardiac damage and improve the cardiac function. In this study, we showed that a combination of low (AA 300 mg/kg; OC 100 mg/kg) and high-dose(AA 600 mg/kg; OC 300 mg/kg) AA and OC water extract with ISL activated the cell survival-related AKT/PI3K signaling pathway in DOX-treated cardiac tissue leading to the upregulation of the antioxidant markers SOD, HO-1, and Keap-1 and regulated mitochondrial dysfunction through the Nrf2 signaling pathway. Moreover, the water extract of AA and OC with ISL inhibited the inflammatory response genes IL-6 and IL-1ß, possibly through the NFκB/AKT/PI3K/p38α/NRLP3 signaling pathways. The water extract of AA and OC with ISL could be a potential herbal drug treatment for cardiac hypertrophy, inflammatory disease, and apoptosis, which can lead to sudden heart failure.
Assuntos
Artemisia , Cardiotoxicidade , Extratos Vegetais , Animais , Ratos , Apoptose , Artemisia/química , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doxorrubicina/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Heme Oxigenase-1/efeitos dos fármacos , Heme Oxigenase-1/metabolismoRESUMO
Pathological cardiac hypertrophy is a considerable contributor to global disease burden. Chinese herbal medicine (CHM) has been used to treat cardiovascular diseases since antiquity. Enhancing stem cell-mediated recovery through CHM represents a promising approach for protection against doxorubicin (Dox)-induced cardiac hypertrophy. Herein, we investigated whether human adipose-derived stem cells (hADSCs) preconditioned with novel herbal formulation Jing Si (JS) improved protective ability of stem cells against doxorubicin-induced cardiac damage. The effect of JS on hADSC viability and migration capacity was determined via MTT and migration assays, respectively. Co-culture of hADSC or JS-preconditioned hADSCs with H9c2 cells was analyzed with immunoblot, flow cytometry, TUNEL staining, LC3B staining, F-actin staining, and MitoSOX staining. The in vivo study was performed M-mode echocardiography after the treatment of JS and JS-preconditioned hADSCs by using Sprague Dawley (SD) rats. Our results indicated that JS at doses below 100 µg/mL had less cytotoxicity in hADSC and JS-preconditioned hADSCs exhibited better migration. Our results also revealed that DOX enhanced apoptosis, cardiac hypertrophy, and mitochondrial reactive oxygen species in DOX-challenged H9c2 cells, while H9c2 cells co-cultured with JS-preconditioned hADSCs alleviated these effects. It also enhanced the expression of autophagy marker LC3B, mTOR and CHIP in DOX-challenged H9c2 cells after co-culture with JS-preconditioned hADSCs. In Dox-challenged rats, the ejection fraction and fractional shortening improved in DOX-challenged SD rats exposed to JS-preconditioned hADSCs. Taken together, our data indicate that JS-preconditioned stem cells exhibit a cardioprotective capacity both in vitro and in vivo, highlighting the value of this therapeutic approach for regenerative therapy.
Assuntos
Coração , Células-Tronco , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Doxorrubicina/toxicidade , CardiomegaliaRESUMO
Liver inflammation has become increasingly prevalent in recent years, leading to the development of diseases like hepatitis, alcoholic liver disease, and fatty liver disease. One factor that has been linked to liver inflammation is increased levels of lipopolysaccharides (LPS), which can be caused by poor diets and sedentary lifestyles that contribute to liver inflammation. There is promising research on a new class of lipids called fatty acid esters of hydroxy fatty acids (FAHFAs), which have been shown to potentiate insulin release and exert an anti-inflammatory effect. Specifically, one type of FAHFA called 9-POHSA (palmitoleic acid ester of 9-hydroxy stearic acid) has been studied for its potential to attenuate inflammation-related indexes induced by LPS in hepatocytes, which play a critical role in the progression of liver inflammation. This study found that following LPS treatment, tumor necrosis factor- α, interleukin-6, and connective tissue growth factor (CTGF) were upregulated and increased cell migration, but 9-POHSA pre-treatment attenuated the upregulation of these markers and prevented cell migration induced by LPS. Using flowcytometry analysis, intracellular reactive oxygen species (ROS) was found to be responsible for CTGF upregulation. In addition, the effects of 9-POHSA were likely associated with its inhibition of the activation of the NF-kB. These results suggest that 9-POHSA has potential as a therapy for liver inflammation and fibrosis by attenuating inflammation-related indexes induced by LPS in hepatocytes. This study provides important insight into the mechanisms of liver inflammation and the potential for new treatments to address liver diseases.
Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Ratos , Lipopolissacarídeos/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Movimento Celular , Ácidos Graxos , Hepatócitos , HidroxiácidosRESUMO
Mitochondrial dysfunction has been linked to many diseases, including organ degeneration and cancer. Wharton's jelly-derived mesenchymal stem cells provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. This study focused on screening the senomorphic properties of Ohwia caudata aqueous extract as an emerging strategy for preventing or treating mitochondrial dysfunction in stem cells. Wharton's jelly-derived mesenchymal stem cells were incubated with 0.1 µM doxorubicin, for 24 h to induce mitochondrial dysfunction. Next, the cells were treated with a series concentration of Ohwia caudata aqueous extract (25, 50, 100, and 200 µg/mL) for another 24 h. In addition, an untreated control group and a doxorubicin-induced mitochondrial dysfunction positive control group were maintained under the same conditions. Our data showed that Ohwia caudata aqueous extract markedly suppressed doxorubicin-induced mitochondrial dysfunction by increasing Tid1 and Tom20 expression, decreased reactive oxygen species production, and maintained mitochondrial membrane potential to promote mitochondrial stability. Ohwia caudata aqueous extract retained the stemness of Wharton's jelly-derived mesenchymal stem cells and reduced the apoptotic rate. These results indicate that Ohwia caudata aqueous extract protects Wharton's jelly-derived mesenchymal stem cells against doxorubicin-induced mitochondrial dysfunction and can potentially prevent mitochondrial dysfunction in other cells. This study provides new directions for the medical application of Ohwia caudata.
Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Geleia de Wharton/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doxorrubicina/toxicidade , Células Cultivadas , Mitocôndrias/metabolismo , Urodelos , Diferenciação CelularRESUMO
Diabetic retinopathy (DR) is a major cause of vision loss in diabetic patients. Hyperglycemia-induced oxidative stress and the accumulation of inflammatory factors result in blood-retinal barrier dysfunction and the pathogenesis of DR. Scoparia dulcis L. extract (SDE), a traditional Chinese medicine, has been recently recognized for its various pharmacological effects, including anti-diabetic, anti-hyperlipidemia, anti-inflammatory, and anti-oxidative activities. However, there is no relevant research on the protective effect of SDE in DR. In this study, we treated high glucose (50 mM) in human retinal epithelial cells (ARPE-19) with different concentrations of SDE and analyzed cell viability, apoptosis, and ROS production. Moreover, we analyzed the expression of Akt, Nrf2, catalase, and HO-1, which showed that SDE dose-dependently reduced ROS production and attenuated ARPE-19 cell apoptosis in a high-glucose environment. Briefly, we demonstrated that SDE exhibited an anti-oxidative and anti-inflammatory ability in protecting retinal cells from high-glucose (HG) treatment. Moreover, we also investigated the involvement of the Akt/Nrf2/HO-1 pathway in SDE-mediated protective effects. The results suggest SDE as a nutritional supplement that could benefit patients with DR.