Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 110023, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38957788

RESUMO

We delve into the distinctive color gamut characteristics resulting from color dispersion of surface relief grating (SRG) and wavelength degeneracy of volume holographic optical element (VHOE) in a diffractive light guide. While a laser-like spectrum achieves an impressive 194% sRGB color gamut for both cases, it proves unsuitable for VHOE light guides due to limitations in breaking the field of view (FOV) of the display. Conversely, a broad-band light source, such as LEDs, offers continuous FOV but reduces the common color gamut to 50% sRGB. We then present a newly designed VHOE light guide capable of achieving the common color gamut of 130% sRGB using two multiplexed holograms of each color, closely matching the 133% sRGB achieved by an SRG light guide. This article presents the first theoretical methodology to elucidate color performance of diffractive light guides utilizing VHOEs with holographic multiplexing, affirming their suitability for crafting high-quality near-eye display.

2.
ACS Omega ; 9(13): 14874-14886, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585138

RESUMO

PtSe2 has asserted its key role among the emerging 2D transition metal dichalcogenides, however, its simplified growth process with controlled number of layers, high crystalline quality, and on inexpensive substrates is still challenging. Here, we report the synthesis details of PtSe2 layers on soda lime glass substrates by selenization of predeposited Pt layers using the thermally assisted conversion method at atmospheric pressure. PtSe2 syntheses are confirmed by X-ray photoelectron spectroscopy and Raman analysis. The layers were further investigated with transmission electron microscopy and optical ellipsometry, revealing the thickness and its dependence on the metal precursor sputtering time. Finally, the integration of PtSe2 as transparent conductive layers in polymer-dispersed liquid crystal structures operating as near-infrared light shutters is demonstrated and device performance is discussed. The proposed simple and inexpensive synthesis approach opens up new directions toward PtSe2 potential technological applications, including ITO-free optoelectronics.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903677

RESUMO

In this paper, aluminum-doped zinc oxide (ZnO:Al or AZO) thin films are grown using atomic layer deposition (ALD) and the influence of postdeposition UV-ozone and thermal annealing treatments on the films' properties are investigated. X-ray diffraction (XRD) revealed a polycrystalline wurtzite structure with a preferable (100) orientation. The crystal size increase after the thermal annealing is observed while UV-ozone exposure led to no significant change in crystallinity. The results of the X-ray photoelectron spectroscopy (XPS) analyses show that a higher amount of oxygen vacancies exists in the ZnO:Al after UV-ozone treatment, and that the ZnO:Al, after annealing, has a lower amount of oxygen vacancies. Important and practical applications of ZnO:Al (such as transparent conductive oxide layer) were found, and its electrical and optical properties demonstrate high tunability after postdeposition treatment, particularly after UV-Ozone exposure, offers a noninvasive and easy way to lower the sheet resistance values. At the same time, UV-Ozone treatment did not cause any significant changes to the polycrystalline structure, surface morphology, or optical properties of the AZO films.

4.
Sci Rep ; 11(1): 20764, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675365

RESUMO

A highly dispersive, diffractive optical element is designed and realized for an extremely high spectral resolution spectroscopy for exoplanet telescope application. Our design uses an annular Fresnel hologram to transform incident starlight directly into a spectrogram. The recording of the hologram is accomplished using two spherical waves of different radius of curvature. The resultant hologram consists of an annular grating structure with a gradually shrinking period as a function of increasing radius. The variable period not only could bring the incoming star-light into focus, but also exhibits a large on-axis chromatic behavior. We demonstrate a dispersion of wavelength 430-700 nm over 190 mm on-axis distance, leading to a super fine spectral resolution 0.0266 nm at wavelength 515 nm for a detector size of 20 µm.

5.
Nanomaterials (Basel) ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920931

RESUMO

In this work, highly conductive Al-doped ZnO (AZO) films are deposited on transparent and flexible muscovite mica substrates by using the atomic layer deposition (ALD) technique. AZO-mica structures possess high optical transmittance at visible and near-infrared spectral range and retain low electric resistivity, even after continuous bending of up to 800 cycles. Structure performances after bending tests have been supported by atomic force microscopy (AFM) analysis. Based on performed optical and electrical characterizations AZO films on mica are implemented as transparent conductive electrodes in flexible polymer dispersed liquid crystal (PDLC) devices. The measured electro-optical characteristics and response time of the proposed devices reveal the higher potential of AZO-mica for future ITO-free flexible optoelectronic applications.

6.
Opt Express ; 28(19): 28573-28583, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988124

RESUMO

In this paper, we present a study of observation of phase error of a volume holographic storage disc during the reading process when the disc is rotated or displaced in the theoretical calculation and the corresponding experiment. This additional phase error will dramatically decrease the bit error rate of a phase-only signal, even applying double-frequency shearing interferometry to retrieve the stored phase signal. Then we propose a novel approach to solve the problem. The stored signal is pre-processed by phase integral along the shearing direction so that applying the integral process to decode the phase signal is not necessary in the readout process. The proposed approach effectively reduces the error in phase retrieval and will be useful when applying double-frequency shearing interferometry in the readout process for volume holographic storage.

7.
Opt Express ; 27(12): 16911-16921, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252909

RESUMO

The era of flexible optoelectronics demands development of wearable and bendable structures, foldable touch screens, paper-like displays, and curved and flexible solid-state lighting devices. Here, we demonstrate the fabrication of highly flexible light valves using polymer-dispersed liquid crystal (PDLC) and TiO2/Ag/TiO2 transparent conductive films. TiO2/Ag/TiO2 multilayers were prepared by magnetron sputtering technique on polyethylene terephthalate (PET) substrates at room temperature. By keeping the equivalent TiO2 layers and varying the deposition time of the Ag layer, proper metal nanograins on TiO2 planar plane were formed, providing the best tradeoff between the transmittance, sheet resistance and bending ability. The results are validated by numerical simulations that suggest the best match between the deposition time and individual layer thickness. Based on the performed characteristics of TiO2/Ag/TiO2/PET structures, several flexible light valves are fabricated and characterized. The sheet resistance values of TiO2/Ag/TiO2/PET remain unchanged over 1000 bending cycles. The measured driving voltage and response time values open great potential of TiO2/Ag/TiO2/PET for integration into next-generation ITO-free flexible and stretchable devices.

8.
Opt Express ; 25(19): 22947-22958, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041600

RESUMO

In the first time, a simulation model with considering the recording dynamics of material is built and is used to simulate evolution of the grating strength of the recorded hologram in a coaxial volume holographic memory system. In addition, phase modulation by lens array in the reference is introduced and observed to perform better diffracted signal quality and higher shifting selectivity, in both simulation and experiment. The use of lens array is found to provide multiple advantages in volume holographic memory system. The new simulation model potentially can be used to precisely design the system to obtain higher diffracted signal quality, higher shifting selectivity, and reduction of M# consumption and increase of storage capacity.

9.
Opt Express ; 22(12): 14944-57, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977588

RESUMO

Based on a vector wave theory of volume holograms, dependence of holographic reconstruction on the polarization states of the writing and reading beams is discussed. It is found that under paraxial approximation the circular polarization holograms provide a better distinction of the reading beams. Characteristics of recording polarization holograms in thick phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymer are experimentally investigated. It is found that the circular polarization holographic recording possesses better dynamic range and material sensitivity, and a uniform spatial frequency response over a wide range. The performance is comparable to that of the intensity holographic recording in PQ/PMMA. Based on theoretical analyses and the material properties, a polarization multiplexing holographic memory using circularly polarization recording configuration for increasing storage capacity has been designed and experimentally demonstrated.

10.
Opt Lett ; 39(11): 3320-3, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24876043

RESUMO

A near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution. The proposed structure does not require indium tin oxide (ITO) contacts and alignment layers. Such a device allows all the processes to be controlled by light, thus opening further potential for real-time image processing at the near-infrared range.

11.
Opt Lett ; 38(12): 2056-8, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938975

RESUMO

N, N-dimethyl-4-nitroaniline doping enables red-light holographic recording that was originally insensitive in thick phenanthrenequinone/poly(methyl methacrylate) photopolymer to have reasonable sensitivity. A volume hologram was recorded by a 647 nm laser with maximum diffraction efficiency of about 43% in a 2-mm-thick sample. A Bragg selectivity curve and an image hologram reconstruction are also demonstrated. These experimental results support recording material for volume holographic applications in an extended red spectral range.

12.
Opt Lett ; 38(4): 495-7, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23455114

RESUMO

The effect of Rh doping in Bi(12)TiO(20) (BTO) crystals on the photosensitivity and recording speed at 1064 nm is reported. Response time of 0.1 s is measured during real-time holographic recording without any preliminary treatments. Once the crystal is pre-excited with a green light, the detected response time becomes 0.02 s. A possibility to implement BTO:Rh crystal plate with liquid crystals into a hybrid organic/inorganic device is demonstrated, which opens perspectives for further near-infrared applications.


Assuntos
Bismuto/química , Fótons , Ródio/química , Titânio/química , Ar , Cristalização , Espectrofotometria Infravermelho
13.
Opt Express ; 20(18): 19628-34, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037015

RESUMO

Prolonged read-out process of a hologram recorded at near infrared with simultaneous green light exposure is measured in Ru-doped Bi12SiO20 crystal. The experimental results are confirmed by numerical simulations, suggesting two different traps involved in the space-charge transport mechanism. In addition, quasi-permanent holographic recording of image with fast updating speed by using two-wavelength recording is demonstrated.


Assuntos
Dispositivos de Armazenamento em Computador , Cristalografia/instrumentação , Holografia/instrumentação , Armazenamento e Recuperação da Informação/métodos , Rubídio/química , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Opt Express ; 20(19): 20863-73, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037210

RESUMO

Volume holographic optical disc (VHOD) technology is simpler than the angular multiplexing holographic system. However, disc rotation usually causes pixel migration, thus reducing signal quality. This study proposes a special geometrical arrangement to counteract pixel migration. Using paraxial approximation analysis, an optimal geometrical distance ratio, K, is calculated to compensate for pixel migration and improve image quality during disc rotation. The results of approximation analysis are confirmed by both simulation and experimental results.

15.
Appl Opt ; 51(9): 1297-303, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22441475

RESUMO

We have proposed and demonstrated a holographic security storage system that is implemented with a shift multiplexing technique. The security function of this storage system is achieved by using a microdiffuser (MD) for random phase encoding of the reference beams. The apparatus of random phase encoding in this system offers an additional and flexible function during the recording processes. The system can generate holographic security memory or nonsecurity holographic memory via using the MD or not. The storage capacity and the average signal-to-noise value of the security storage system are 16 bits/µm(2) and 3.5, respectively. Lateral shifting selectivity in this holographic security storage system is theoretically analyzed and experimentally investigated.

16.
Opt Lett ; 36(24): 4773-5, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22179879

RESUMO

A reflective light-scattering (RLS) microscope with structured illumination (SI) provides subdiffraction resolution and improves the image quality of gold nanoparticles in biological systems. The three-dimensional (3D)-structured pattern is rapidly and precisely controlled with a spatial light modulator and scrambled at the conjugate image plane to increase spatial incoherence. The reconstructed SI-RLS image of 100 nm gold nanoparticles reveals lateral and axial resolutions of approximately 117 and 428 nm. We present a high-resolution image of gold nanoparticles inside a HeLa cell, with improved contrast.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Desenho de Equipamento , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Lasers , Luz , Microscopia/métodos , Modelos Estatísticos , Nanopartículas/química , Óptica e Fotônica , Espalhamento de Radiação
17.
J Phys Chem A ; 115(42): 11508-14, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21916471

RESUMO

Azoaromatic dyes have been extensively investigated over the past decade due to their potential use in a variety of optical devices that exploit their ultrafast photoisomerization processes. Among the azoaromatic dyes, Disperse Red 19 is a commercially available azobenzene nonlinear optical chromophore with a relatively high ground-state dipole moment. In the present study, we used ultrafast time-resolved spectroscopy to clarify the dynamics of a push-pull substituted azobenzene dye. Solution and film samples exhibited different ultrafast dynamics, indicating that the molecular environment affects the photoisomerization dynamics of the dye.

18.
Opt Lett ; 36(16): 3039-41, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21847152

RESUMO

Volume polarization holographic recording in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer is obtained. Photoinduced birefringence in a 2 mm thick sample is measured by a phase-modulated ellipsometry. The birefringence induced in this material by linearly polarized beam at 514 nm reaches 1.2×10(-5). In addition, ability for recording volume polarization grating using two different polarization configurations is demonstrated and compared. The experimental results show that the diffraction efficiency of the hologram reaches to ∼40% by using two orthogonal circularly polarized beams.

19.
Opt Express ; 19 Suppl 4: A757-62, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747544

RESUMO

Light-management is critical to thin film solar cells due to their usually limited optical absorption in the active layer. Conventional approaches involve employing separate techniques for anti-reflection and light trapping. Here, we demonstrate an embedded biomimetic nanostructure (EBN) that achieves both effects for hydrogenated amorphous silicon (a-Si:H) solar cells. The fabrication of EBNs is accomplished by patterning an index-matching silicon-nitride layer deposited on a glass substrate using polystyrene nanospheres lithography, followed by reactive ion etching. The profile of EBN is then reproduced layer by layer during the deposition of a-Si:H cells. We show that a solar cell with an optimized EBN exhibits a broadband enhanced external quantum efficiency due to both anti-reflection and light-trapping, with respect to an industrial standard cell using an Asahi U glass substrate which is mostly optimized for light trapping. Overall, the cell with an optimized EBN achieves a large short-circuit current density of 17.74 mA/cm(2), corresponding to a 37.63% enhancement over a flat control cell. The power conversion efficiency is also increased from 5.36% to 8.32%. Moreover, the light management enabled by the EBN remains efficient over a wide range of incident angles up to 60°, which is particularly desirable for real environments with diffused sun light. The novel patterning method is not restricted to a-Si:H solar cells, but is also widely applicable to other thin film materials.


Assuntos
Materiais Biomiméticos/química , Fontes de Energia Elétrica , Nanoestruturas/química , Fenômenos Ópticos , Energia Solar , Absorção , Nanoestruturas/ultraestrutura , Teoria Quântica , Análise Espectral
20.
Opt Lett ; 36(11): 1981-3, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21633422

RESUMO

Real-time holographic recording and an improvement of the response time in ruthenium (Ru)-doped Bi(12)SiO(20) (BSO) crystal at 1064 nm is obtained. Using green light pre-exposure, a significant operation speed of 60 ms is achieved. In addition, the ability for image reconstruction is demonstrated in Ru-doped BSO, supporting further applications as reversible media for real-time image processing at the near-IR spectral range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA