Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mol Cell ; 84(20): 4016-4030.e6, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39321805

RESUMO

Hydrogen sulfide (H2S), a metabolite of the transsulfuration pathway, has been implicated in ferroptosis, a unique form of cell death caused by lipid peroxidation. While the exact mechanisms controlling ferroptosis remain unclear, our study reveals that H2S sensitizes human non-small cell lung cancer (NSCLC) cells to this process, particularly when cysteine levels are low. Combining H2S with cystine depletion significantly enhances the effectiveness of ferroptosis-based cancer therapy. Mechanistically, H2S persulfidates the 195th cysteine on S-adenosyl homocysteine hydrolase (SAHH), reducing its enzymatic activity. This leads to decreased homocysteine levels, subsequently lowering cysteine and glutathione concentrations under cystine depletion conditions. These changes ultimately increase the vulnerability of NSCLC cells to ferroptosis. Our findings establish H2S as a key regulator of homocysteine metabolism and a critical factor in determining NSCLC cell susceptibility to ferroptosis. These results highlight the potential of H2S-based therapies to improve the efficacy of ferroptosis-targeted cancer treatments for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Homocisteína , Sulfeto de Hidrogênio , Neoplasias Pulmonares , Humanos , Ferroptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Sulfeto de Hidrogênio/metabolismo , Homocisteína/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Animais , Adenosil-Homocisteinase/metabolismo , Adenosil-Homocisteinase/genética , Cisteína/metabolismo , Linhagem Celular Tumoral , Células A549 , Glutationa/metabolismo , Camundongos , Camundongos Nus , Cistina/metabolismo
2.
Cell Death Dis ; 15(7): 516, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025830

RESUMO

Tumour metabolic reprogramming is pivotal for tumour survival and proliferation. Investigating potential molecular mechanisms within the heterogeneous and clinically aggressive triple-negative breast cancer (TNBC) subtype is essential to identifying novel therapeutic targets. Accordingly, we investigated the role of branched-chain α-keto acid dehydrogenase kinase (BCKDK) in promoting tumorigenesis in TNBC. We analysed The Cancer Genome Atlas dataset and immunohistochemically stained surgical specimens to investigate BCKDK expression and its prognostic implications in TNBC. The effects of BCKDK on tumorigenesis were assessed using cell viability, colony formation, apoptosis, and cell cycle assays, and subsequently validated in vivo. Metabolomic screening was performed via isotope tracer studies. The downstream target was confirmed using mass spectrometry and a co-immunoprecipitation experiment coupled with immunofluorescence analysis. Upstream transcription factors were also examined using chromatin immunoprecipitation and luciferase assays. BCKDK was upregulated in TNBC tumour tissues and associated with poor prognosis. BCKDK depletion led to reduced cell proliferation both in vitro and vivo. MYC-associated zinc finger protein (MAZ) was confirmed as the major transcription factor directly regulating BCKDK expression in TNBC. Mechanistically, BCKDK interacted with glucose-6-phosphate dehydrogenase (G6PD), leading to increased flux in the pentose phosphate pathway for macromolecule synthesis and detoxification of reactive oxygen species. Forced expression of G6PD rescued the growth defect in BCKDK-deficient cells. Notably, the small-molecule inhibitor of BCKDK, 3,6-dichlorobenzo(b)thiophene-2-carboxylic acid, exhibited anti-tumour effects in a patient-derived tumour xenograft model. Our findings hold significant promise for developing targeted therapies aimed at disrupting the MAZ/BCKDK/G6PD signalling pathway, offering potential advancements in treating TNBC through metabolic reprogramming.


Assuntos
Proliferação de Células , Glucose , Glucosefosfato Desidrogenase , Neoplasias de Mama Triplo Negativas , Regulação para Cima , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Humanos , Feminino , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Animais , Linhagem Celular Tumoral , Camundongos , Glucose/metabolismo , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus
3.
J Pharm Anal ; 14(4): 100915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634065

RESUMO

Pien Tze Huang (PZH), a class I nationally protected traditional Chinese medicine (TCM), has been used to treat liver diseases such as hepatitis; however, the effect of PZH on the progression of sepsis is unknown. Here, we reported that PZH attenuated lipopolysaccharide (LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signalling. Mechanistically, PZH stimulated signal transducer and activator of transcription 3 (STAT3) phosphorylation to induce the expression of A20, which could inhibit the activation of NF-κB and MAPK signalling. Knockdown of the bile acid (BA) receptor G protein-coupled bile acid receptor 1 (TGR5) in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction, as well as the LPS-induced inflammatory response, suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5. Consistently, deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20, the activation of NF-κB and MAPK signalling, and the production of proinflammatory cytokines, whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines. Overall, our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.

4.
Redox Biol ; 71: 103118, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490069

RESUMO

The induction of ferroptosis is promising for cancer therapy. However, the mechanisms enabling cancer cells to evade ferroptosis, particularly in low-cystine environments, remain elusive. Our study delves into the intricate regulatory mechanisms of Activating transcription factor 3 (ATF3) on Cystathionine ß-synthase (CBS) under cystine deprivation stress, conferring resistance to ferroptosis in colorectal cancer (CRC) cells. Additionally, our findings establish a positively correlation between this signaling axis and CRC progression, suggesting its potential as a therapeutic target. Mechanistically, ATF3 positively regulates CBS to resist ferroptosis under cystine deprivation stress. In contrast, the suppression of CBS sensitizes CRC cells to ferroptosis through targeting the mitochondrial tricarboxylic acid (TCA) cycle. Notably, our study highlights that the ATF3-CBS signaling axis enhances ferroptosis-based CRC cancer therapy. Collectively, the findings reveal that the ATF3-CBS signaling axis is the primary feedback pathway in ferroptosis, and blocking this axis could be a potential therapeutic approach for colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Cistationina beta-Sintase/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Ferroptose/genética , Cistina , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo
5.
Front Med ; 18(2): 375-393, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38157196

RESUMO

Retroperitoneal liposarcoma (RLPS) is the main subtype of retroperitoneal soft sarcoma (RSTS) and has a poor prognosis and few treatment options, except for surgery. The proteomic and metabolic profiles of RLPS have remained unclear. The aim of our study was to reveal the metabolic profile of RLPS. Here, we performed proteomic analysis (n = 10), metabolomic analysis (n = 51), and lipidomic analysis (n = 50) of retroperitoneal dedifferentiated liposarcoma (RDDLPS) and retroperitoneal well-differentiated liposarcoma (RWDLPS) tissue and paired adjacent adipose tissue obtained during surgery. Data analysis mainly revealed that glycolysis, purine metabolism, pyrimidine metabolism and phospholipid formation were upregulated in both RDDLPS and RWDLPS tissue compared with the adjacent adipose tissue, whereas the tricarboxylic acid (TCA) cycle, lipid absorption and synthesis, fatty acid degradation and biosynthesis, as well as glycine, serine, and threonine metabolism were downregulated. Of particular importance, the glycolytic inhibitor 2-deoxy-D-glucose and pentose phosphate pathway (PPP) inhibitor RRX-001 significantly promoted the antitumor effects of the MDM2 inhibitor RG7112 and CDK4 inhibitor abemaciclib. Our study not only describes the metabolic profiles of RDDLPS and RWDLPS, but also offers potential therapeutic targets and strategies for RLPS.


Assuntos
Lipossarcoma , Neoplasias Retroperitoneais , Humanos , Neoplasias Retroperitoneais/metabolismo , Lipossarcoma/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Proteômica , Metabolômica , Idoso , Metaboloma , Adulto , Multiômica
6.
Cell Rep ; 42(5): 112471, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37149865

RESUMO

T helper type 2 (Th2) cytokine-activated M2 macrophages contribute to inflammation resolution and wound healing. This study shows that IL-4-primed macrophages exhibit a stronger response to lipopolysaccharide stimulation while maintaining M2 signature gene expression. Metabolic divergence between canonical M2 and non-canonical proinflammatory-prone M2 (M2INF) macrophages occurs after the IL-4Rα/Stat6 axis. Glycolysis supports Hif-1α stabilization and proinflammatory phenotype of M2INF macrophages. Inhibiting glycolysis blunts Hif-1α accumulation and M2INF phenotype. Wdr5-dependent H3K4me3 mediates the long-lasting effect of IL-4, with Wdr5 knockdown inhibiting M2INF macrophages. Our results also show that the induction of M2INF macrophages by IL-4 intraperitoneal injection and transferring of M2INF macrophages confer a survival advantage against bacterial infection in vivo. In conclusion, our findings highlight the previously neglected non-canonical role of M2INF macrophages and broaden our understanding of IL-4-mediated physiological changes. These results have immediate implications for how Th2-skewed infections could redirect disease progression in response to pathogen infection.


Assuntos
Interleucina-4 , Macrófagos , Humanos , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Glicólise/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
7.
Acta Pharm Sin B ; 13(1): 157-173, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815049

RESUMO

Metabolic reprogramming is a hallmark of cancer, including lung cancer. However, the exact underlying mechanism and therapeutic potential are largely unknown. Here we report that protein arginine methyltransferase 6 (PRMT6) is highly expressed in lung cancer and is required for cell metabolism, tumorigenicity, and cisplatin response of lung cancer. PRMT6 regulated the oxidative pentose phosphate pathway (PPP) flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phospho-gluconate dehydrogenase (6PGD) and α-enolase (ENO1). Furthermore, PRMT6 methylated R324 of 6PGD to enhancing its activity; while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate (2-PG) binding to ENO1, respectively. Lastly, targeting PRMT6 blocked the oxidative PPP flux, glycolysis pathway, and tumor growth, as well as enhanced the anti-tumor effects of cisplatin in lung cancer. Together, this study demonstrates that PRMT6 acts as a post-translational modification (PTM) regulator of glucose metabolism, which leads to the pathogenesis of lung cancer. It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy.

9.
mBio ; 14(1): e0237022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36507835

RESUMO

Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.


Assuntos
Encefalite Viral , Ferroptose , Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Humanos , Animais , Camundongos , Herpesvirus Humano 1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Inibidores de Proteassoma , Ciclo-Oxigenase 2/metabolismo , Inflamação
10.
Virulence ; 13(1): 1407-1422, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35993169

RESUMO

As obligate intracellular parasites, viruses rely completely on host metabolic machinery and hijack host nutrients for viral replication. Newcastle disease virus (NDV) causes acute, highly contagious avian disease and functions as an oncolytic agent. NDV efficiently replicates in both chicken and tumour cells. However, how NDV reprograms host cellular metabolism for its efficient replication is still ill-defined. We previously identified a significantly upregulated glutamate transporter gene, solute carrier family 1 member 3 (SLC1A3), during NDV infection via transcriptome analysis. To investigate the potential role of SLC1A3 during NDV infection, we first confirmed the marked upregulation of SLC1A3 in NDV-infected DF-1 or A549 cells through p53 and NF-κB pathways. Knockdown of SLC1A3 inhibited NDV infection. Western blot analysis further confirmed that glutamine, but not glutamate, asparagine, or aspartate, was required for NDV replication. Metabolic flux data showed that NDV promotes the decomposition of glutamine into the tricarboxylic acid cycle. Importantly, the level of glutamate and glutaminolysis were reduced by SLC1A3 knockdown, indicating that SLC1A3 propelled glutaminolysis for glutamate utilization and NDV replication in host cells. Taken together, our data identify that SLC1A3 serves as an important regulator for glutamine metabolism and is hijacked by NDV for its efficient replication during NDV infection. These results improve our understanding of the interaction between NDV and host cellular metabolism and lay the foundation for further investigation of efficient vaccines.


Assuntos
Glutamina , Vírus da Doença de Newcastle , Células A549 , Animais , Galinhas , Glutamina/metabolismo , Humanos , Vírus da Doença de Newcastle/genética , Replicação Viral
11.
Proc Natl Acad Sci U S A ; 119(34): e2117089119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943976

RESUMO

The COVID-19 pandemic has incurred tremendous costs worldwide and is still threatening public health in the "new normal." The association between neutralizing antibody levels and metabolic alterations in convalescent patients with COVID-19 is still poorly understood. In the present work, we conducted absolutely quantitative profiling to compare the plasma cytokines and metabolome of ordinary convalescent patients with antibodies (CA), convalescents with rapidly faded antibodies (CO), and healthy subjects. As a result, we identified that cytokines such as M-CSF and IL-12p40 and plasma metabolites such as glycylproline (gly-pro) and long-chain acylcarnitines could be associated with antibody fading in COVID-19 convalescent patients. Following feature selection, we built machine-learning-based classification models using 17 features (six cytokines and 11 metabolites). Overall accuracies of more than 90% were attained in at least six machine-learning models. Of note, the dipeptide gly-pro, a product of enzymatic peptide cleavage catalyzed by dipeptidyl peptidase 4 (DPP4), strongly accumulated in CO individuals compared with the CA group. Furthermore, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination experiments in healthy mice demonstrated that supplementation of gly-pro down-regulates SARS-CoV-2-specific receptor-binding domain antibody levels and suppresses immune responses, whereas the DPP4 inhibitor sitagliptin can counteract the inhibitory effects of gly-pro upon SARS-CoV-2 vaccination. Our findings not only reveal the important role of gly-pro in the immune responses to SARS-CoV-2 infection but also indicate a possible mechanism underlying the beneficial outcomes of treatment with DPP4 inhibitors in convalescent COVID-19 patients, shedding light on therapeutic and vaccination strategies against COVID-19.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Convalescença , Citocinas , Dipeptídeos , Inibidores da Dipeptidil Peptidase IV , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Formação de Anticorpos , COVID-19/sangue , COVID-19/imunologia , Citocinas/sangue , Dipeptídeos/sangue , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Humanos , Aprendizado de Máquina , Metaboloma , Camundongos , SARS-CoV-2 , Vacinação
12.
Blood Adv ; 6(17): 4924-4935, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35728063

RESUMO

The short life span of platelets is a major challenge to platelet transfusion services because of the lack of effective intervention. Here, we found that the accumulation of long-chain acylcarnitines (LCACs) is responsible for mitochondrial damage and platelet storage lesion. Further studies showed that the blockade of fatty acid oxidation and the activation of AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase/carnitine palmitoyltransferase 1 (CPT1) pathways that promote fatty acid metabolism are important reasons for the accumulation of LCACs. The excessive accumulation of LCACs can cause mitochondrial damage and a short life span of stored platelets. The mechanism study elucidated that NAD+ exhaustion and the subsequent decrease in sirtuin 3 (Sirt3) activity caused an increase in the level of CPT2 K79 acetylation, which is the primary cause of the blockade of fatty acid oxidation and the accumulation of LCACs. Blocking LCAC generation with the inhibitors of AMPK or CPT1, the agonists of Sirt3, and antioxidants tremendously retarded platelet storage lesion in vitro and prolonged the survival of stored platelets in vivo posttransfusion with single or combined use. In summary, we discovered that CPT2 acetylation attenuates fatty acid oxidation and exacerbates platelet storage lesion and may serve as a new target for improving platelet storage quality.


Assuntos
Sirtuína 3 , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilação , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Longevidade , Sirtuína 3/metabolismo
13.
Nat Cancer ; 3(5): 614-628, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35449308

RESUMO

Small cell lung cancer (SCLC) lacks effective treatments to overcome chemoresistance. Here we established multiple human chemoresistant xenograft models through long-term intermittent chemotherapy, mimicking clinically relevant therapeutic settings. We show that chemoresistant SCLC undergoes metabolic reprogramming relying on the mevalonate (MVA)-geranylgeranyl diphosphate (GGPP) pathway, which can be targeted using clinically approved statins. Mechanistically, statins induce oxidative stress accumulation and apoptosis through the GGPP synthase 1 (GGPS1)-RAB7A-autophagy axis. Statin treatment overcomes both intrinsic and acquired SCLC chemoresistance in vivo across different SCLC PDX models bearing high GGPS1 levels. Moreover, we show that GGPS1 expression is negatively associated with survival in patients with SCLC. Finally, we demonstrate that combined statin and chemotherapy treatment resulted in durable responses in three patients with SCLC who relapsed from first-line chemotherapy. Collectively, these data uncover the MVA-GGPP pathway as a metabolic vulnerability in SCLC and identify statins as a potentially effective treatment to overcome chemoresistance.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Linhagem Celular Tumoral , Farnesiltranstransferase/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Ácido Mevalônico/farmacologia , Fosfatos de Poli-Isoprenil , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico
14.
Cell Res ; 32(7): 638-658, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459936

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1) drives tumorigenesis via producing oncometabolite R-2-hydroxyglutarate (R-2-HG) across various tumor types. However, mIDH1 inhibitors appear only effective in hematological tumors. The therapeutic benefit in solid tumors remains elusive, likely due to the complex tumor microenvironment. In this study, we discover that R-2-HG produced by IDH1-mutant tumor cells is preferentially imported into vascular endothelial cells and remodels mitochondrial respiration to promote tumor angiogenesis, conferring a therapeutic vulnerability in IDH1-mutant solid tumors. Mechanistically, SLC1A1, a Na+-dependent glutamate transporter that is preferentially expressed in endothelial cells, facilitates the influx of R-2-HG from the tumor microenvironment into the endothelial cells as well as the intracellular trafficking of R-2-HG from cytoplasm to mitochondria. R-2-HG hijacks SLC1A1 to promote mitochondrial Na+/Ca2+ exchange, which activates the mitochondrial respiratory chain and fuels vascular endothelial cell migration in tumor angiogenesis. SLC1A1 deficiency in mice abolishes mIDH1-promoted tumor angiogenesis as well as the therapeutic benefit of mIDH1 inhibitor in solid tumors. Moreover, we report that HH2301, a newly discovered mIDH1 inhibitor, shows promising efficacy in treating IDH1-mutant cholangiocarcinoma in preclinical models. Together, we identify a new role of SLC1A1 as a gatekeeper of R-2-HG-mediated crosstalk between IDH1-mutant tumor cells and vascular endothelial cells, and demonstrate the therapeutic potential of mIDH1 inhibitors in treating IDH1-mutant solid tumors via disrupting R-2-HG-promoted tumor angiogenesis.


Assuntos
Transportador 3 de Aminoácido Excitatório , Isocitrato Desidrogenase , Neoplasias , Animais , Células Endoteliais/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutaratos , Isocitrato Desidrogenase/genética , Camundongos , Mitocôndrias/metabolismo , Mutação , Microambiente Tumoral
15.
Sci Signal ; 15(721): eabi9983, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167340

RESUMO

To perform their antiviral and antitumor functions, T cells must integrate signals both from the T cell receptor (TCR), which instruct the cell to remain quiescent or become activated, and from cytokines that guide cellular proliferation and differentiation. In mature CD8+ T cells, Themis has been implicated in integrating TCR and cytokine signals. We investigated whether Themis plays a direct role in cytokine signaling in mature T cells. Themis was required for IL-2- and IL-15-driven CD8+ T cell proliferation both in mice and in vitro. Mechanistically, we found that Themis promoted the activation of the transcription factor Stat and mechanistic target of rapamycin signaling downstream of cytokine receptors. Metabolomics and stable isotope tracing analyses revealed that Themis deficiency reduced glycolysis and serine and nucleotide biosynthesis, demonstrating a receptor-proximal requirement for Themis in triggering the metabolic changes that enable T cell proliferation. The cellular, metabolic, and biochemical defects caused by Themis deficiency were corrected in mice lacking both Themis and the phosphatase Shp1, suggesting that Themis mediates IL-2 and IL-15 receptor-proximal signaling by restraining the activity of Shp1. Together, these results not only shed light on the mechanisms of cytokine signaling but also provide new clues on manipulating T cells for clinical applications.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-15/genética , Interleucina-2/genética , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
16.
Autophagy ; 18(7): 1503-1521, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34720029

RESUMO

Lacking a self-contained metabolism network, viruses have evolved multiple mechanisms for rewiring the metabolic system of their host to hijack the host's metabolic resources for replication. Newcastle disease virus (NDV) is a paramyxovirus, as an oncolytic virus currently being developed for cancer treatment. However, how NDV alters cellular metabolism is still far from fully understood. In this study, we show that NDV infection reprograms cell metabolism by increasing glucose utilization in the glycolytic pathway. Mechanistically, NDV induces mitochondrial damage, elevated mitochondrial reactive oxygen species (mROS) and ETC dysfunction. Infection of cells depletes nucleotide triphosphate levels, resulting in elevated AMP:ATP ratios, AMP-activated protein kinase (AMPK) phosphorylation, and MTOR crosstalk mediated autophagy. In a time-dependent manner, NDV shifts the balance of mitochondrial dynamics from fusion to fission. Subsequently, PINK1-PRKN-dependent mitophagy was activated, forming a ubiquitin chain with MFN2 (mitofusin 2), and molecular receptor SQSTM1/p62 recognized damaged mitochondria. We also found that NDV infection induces NAD+-dependent deacetylase SIRT3 loss via mitophagy to engender HIF1A stabilization, leading to the switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Overall, these studies support a model that NDV modulates host cell metabolism through PINK1-PRKN-dependent mitophagy for degrading SIRT3.Abbreviations: AMPK: AMP-activated protein kinase; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ECAR: extracellular acidification rate; hpi: hours post infection LC-MS: liquid chromatography-mass spectrometry; mito-QC: mCherry-GFP-FIS1[mt101-152]; MFN2: mitofusin 2; MMP: mitochondrial membrane potential; mROS: mitochondrial reactive oxygen species; MOI: multiplicity of infection; 2-NBDG: 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2-deoxyglucose; NDV: newcastle disease virus; OCR: oxygen consumption rate; siRNA: small interfering RNA; SIRT3: sirtuin 3; TCA: tricarboxylic acid; TCID50: tissue culture infective doses.


Assuntos
Mitofagia , Sirtuína 3 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Metabolismo Energético , Mitofagia/genética , Vírus da Doença de Newcastle/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Cell Res ; 32(1): 54-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561619

RESUMO

The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP , Glucose , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Camundongos , Fosforilação , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética
18.
Sci Adv ; 7(49): eabk0490, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860557

RESUMO

Early-activated CD8+ T cells increase both aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS). However, whether and how the augmentation of OXPHOS regulates differentiation of effector CD8+ T cell remains unclear. Here, we found that C1qbp was intrinsically required for such differentiation in antiviral and antitumor immune responses. Activated C1qbp-deficient CD8+ T cells failed to increase mitochondrial respiratory capacities, resulting in diminished acetyl­coenzyme A as well as elevated fumarate and 2-hydroxyglutarate. Consequently, hypoacetylation of H3K27 and hypermethylation of H3K27 and CpG sites were associated with transcriptional down-regulation of effector signature genes. The effector differentiation of C1qbp-sufficient or C1qbp-deficient CD8+ T cells was reversed by fumarate or a combination of histone deacetylase inhibitor and acetate. Therefore, these findings identify C1qbp as a pivotal positive regulator in the differentiation of effector CD8+ T cells and highlight a metabolic-epigenetic axis in this process.

19.
Front Pharmacol ; 12: 784231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880765

RESUMO

The prevalence of diabetes mellitus has been increasing for decades worldwide. To develop safe and potent therapeutics, animal models contribute a lot to the studies of the mechanisms underlying its pathogenesis. Dietary induction using is a well-accepted protocol in generating insulin resistance and diabetes models. In the present study, we reported the multi-omics profiling of the liver and sera from both peripheral blood and hepatic portal vein blood from Macaca fascicularis that spontaneously developed Type-2 diabetes mellitus with a chow diet (sDM). The other two groups of the monkeys fed with chow diet and high-fat high-sugar (HFHS) diet, respectively, were included for comparison. Analyses of various omics datasets revealed the alterations of high consistency. Between the sDM and HFHS monkeys, both the similar and unique alterations in the lipid metabolism have been demonstrated from metabolomic, transcriptomic, and proteomic data repeatedly. The comparison of the proteome and transcriptome confirmed the involvement of fatty acid binding protein 4 (FABP4) in the diet-induced pathogenesis of diabetes in macaques. Furthermore, the commonly changed genes between spontaneous diabetes and HFHS diet-induced prediabetes suggested that the alterations in the intra- and extracellular structural proteins and cell migration in the liver might mediate the HFHS diet induction of diabetes mellitus.

20.
Cell ; 184(22): 5559-5576.e19, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34678143

RESUMO

Glucose consumption is generally increased in tumor cells to support tumor growth. Interestingly, we report that glycogen accumulation is a key initiating oncogenic event during liver malignant transformation. We found that glucose-6-phosphatase (G6PC) catalyzing the last step of glycogenolysis is frequently downregulated to augment glucose storage in pre-malignant cells. Accumulated glycogen undergoes liquid-liquid phase separation, which results in the assembly of the Laforin-Mst1/2 complex and consequently sequesters Hippo kinases Mst1/2 in glycogen liquid droplets to relieve their inhibition on Yap. Moreover, G6PC or another glycogenolysis enzyme-liver glycogen phosphorylase (PYGL) deficiency in both human and mice results in glycogen storage disease along with liver enlargement and tumorigenesis in a Yap-dependent manner. Consistently, elimination of glycogen accumulation abrogates liver growth and cancer incidence, whereas increasing glycogen storage accelerates tumorigenesis. Thus, we concluded that cancer-initiating cells adapt a glycogen storing mode, which blocks Hippo signaling through glycogen phase separation to augment tumor incidence.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Glicogênio/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glucose-6-Fosfatase/metabolismo , Glicogênio Fosforilase/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Via de Sinalização Hippo , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Transição de Fase , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinase 3/metabolismo , Proteínas de Sinalização YAP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA