Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virol Sin ; 39(3): 358-368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679333

RESUMO

The recent concurrent emergence of H5N1, H5N6, and H5N8 avian influenza viruses (AIVs) has led to significant avian mortality globally. Since 2020, frequent human-animal interactions have been documented. To gain insight into the novel H5 subtype AIVs (i.e., H5N1, H5N6 and H5N8), we collected 6102 samples from various regions of China between January 2021 and September 2022, and identified 41 H5Nx strains. Comparative analyses on the evolution and biological properties of these isolates were conducted. Phylogenetic analysis revealed that the 41 H5Nx strains belonged to clade 2.3.4.4b, with 13 related to H5N1, 19 to H5N6, and 9 to H5N8. Analysis based on global 2.3.4.4b viruses showed that all the viruses described in this study were likely originated from H5N8, exhibiting a heterogeneous evolutionary history between H5N1 and H5N6 during 2015-2022 worldwide. H5N1 showed a higher rate of evolution in 2021-2022 and more sites under positive selection pressure in 2015-2022. The antigenic profiles of the novel H5N1 and H5N6 exhibited notable variations. Further hemagglutination inhibition assay suggested that some A(H5N1) viruses may be antigenically distinct from the circulating H5N6 and H5N8 strains. Mammalian challenge assays demonstrated that the H5N8 virus (21GD001_H5N8) displayed the highest pathogenicity in mice, followed by the H5N1 virus (B1557_H5N1) and then the H5N6 virus (220086_H5N6), suggesting a heterogeneous virulence profile of H5 AIVs in the mammalian hosts. Based on the above results, we speculate that A(H5N1) viruses have a higher risk of emergence in the future. Collectively, these findings unveil a new landscape of different evolutionary history and biological characteristics of novel H5 AIVs in clade 2.3.4.4b, contributing to a better understanding of designing more effective strategies for the prevention and control of novel H5 AIVs.


Assuntos
Evolução Molecular , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Animais , China/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Camundongos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/patogenicidade , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Virulência , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/classificação , Galinhas/virologia , Camundongos Endogâmicos BALB C , Feminino , Aves/virologia , Humanos
3.
Analyst ; 148(20): 4922-4938, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37743834

RESUMO

Cell sorting is an essential prerequisite for cell research and has great value in life science and clinical studies. Among the many microfluidic cell sorting technologies, label-free methods based on the size of different cell types have been widely studied. However, the heterogeneity in size for cells of the same type and the inevitable size overlap between different types of cells would result in performance degradation in size-based sorting. To tackle such challenges, deformation-assisted technologies are receiving more attention recently. Cell deformability is an inherent biophysical marker of cells that reflects the changes in their internal structures and physiological states. It provides additional dimensional information for cell sorting besides size. Therefore, in this review, we summarize the recent advances in deformation-assisted microfluidic cell sorting technologies. According to how the deformability is characterized and the form in which the force acts, the technologies can be divided into two categories: (1) the indirect category including transit-time-based and image-based methods, and (2) the direct category including microstructure-based and hydrodynamics-based methods. Finally, the separation performance and the application scenarios of each method, the existing challenges and future outlook are discussed. Deformation-assisted microfluidic cell sorting technologies are expected to realize greater potential in the label-free analysis of cells.

4.
mLife ; 1(1): 92-95, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37731725

RESUMO

We present a method of mapping data from publicly available genomics and publication resources to the Resource Description Framework (RDF) and implement a server to publish linked open data (LOD). As one of the largest and most comprehensive semantic databases about coronaviruses, the resulted gcCov database demonstrates the capability of using data in the LOD framework to promote correlations between genotypes and phenotypes. These correlations will be helpful for future research on fundamental viral mechanisms and drug and vaccine designs. These LOD with 62,168,127 semantic triplets and their visualizations are freely accessible through gcCov at https://nmdc.cn/gccov/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA