Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38345115

RESUMO

In this study, we conducted successful experiments on ethylenediamine sulfate (EDS), an organic compound, to investigate its enantioselectivity in chiral crystallization. We employed optical trapping with circularly polarized laser beams, using a continuous wave laser at 1064 nm. By focusing the laser at the air-solution interface of a heavy water-saturated EDS solution, the formation of sub-micrometer-sized chiral EDS crystals was verified. Two generated enantiomorphs (d-crystal and l-crystal) were identified by the rotating analyzer method. The enantioselectivity in the chiral crystallization of EDS was assessed through 30 to 60 times experiments conducted under various conditions of laser powers and polarization modes, utilizing the count of generated crystals for each enantiomorph in the evaluation. Circularly polarized lasers at a specific power created an imbalance in the generation probability of the enantiomorphs, resulting in crystal enantiomeric excess values of 23% and -30%. The enantioselectivity mechanism was explored from two perspectives: refractive index differences of two enantiomorphs and 3D helical optical forces. Study of the thermodynamic mechanism was insufficient to explain the outcomes. Conversely, the 3D helical optical force mechanism revealed that the forces acting on EDS clusters in solution induced helical fluid motion, driving EDS nucleation, with the helicity of fluid motion determining the crystal's chirality. This approach will present new insights into chirality in industrial and research fields, with potential applications in regard to improving optical resolution and addressing the origin of homochirality.

2.
Nanoscale Res Lett ; 15(1): 130, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32542412

RESUMO

α-Phase hematite photoelectrodes can split water. This material is nontoxic, inexpensive, and chemically stable; its low energy gap of 2.3 eV absorbs light with wavelengths lower than 550 nm, accounting for approximately 30% of solar energy. Previously, we reported polyhedral pseudocubic α-Fe2O3 nanocrystals using a facile hydrothermal route to increase spatial charge separation, enhancing the photocurrent of photocatalytic activity in the water-splitting process. Here, we propose a p-n junction structure in the photoanode of pseudocubic α-Fe2O3 to improve short carrier diffusion length, which limits its photocatalytic efficiency. We dope Zn on top of an Fe2O3 photoanode to form a layer of p-type semiconductor material; Sn is doped from the FTO substrate to form a layer of n-type semiconductor material. The p-n junction, n-type Fe2O3:Sn and p-type Fe2O3:Zn, increase light absorption and charge separation caused by the internal electric field in the p-n junction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA