Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biochem Cell Biol ; 116: 105610, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518663

RESUMO

It has been proposed that the aberrant expressions of the classical apoptosis-related genes and the subsequent decrease of apoptosis contribute to the development of cisplatin resistance in gastric cancer. However, little is known about the correlation and the molecular regulation mechanisms of cisplatin and the apoptosis-related gene expressions. Herein, we first identified the expressions of the anti-apoptotic BCL2 and the prostaglandin-endoperoxide synthase-2 (PTGS2) genes, which were abundant in the gastric carcinoma and associated with poor patient survival, were closely related with the resistance against cisplatin. Further investigations revealed that PTGS2 served as an essential mediator involved in the developing process of the resistance against cisplatin via mediating the inhibition effects of cisplatin on BCL2 expression. Mechanistically, cisplatin induced PTGS2 expression through ROS/NF-κB pathway. In addition, PTGS2 mediated cisplatin-induced BCL2 expression and subsequent resistance to apoptosis via PGE2/EP4/MAPKs (ERK1/2, P38) axis. Analysis of the clinical specimens demonstrated that PTGS2 and BCL2 were positively correlated in human gastric cancer. Moreover, in the xenograft models, inhibition of PTGS2 by celecoxib significantly augmented the cytotoxic efficacy of cisplatin in the resistant gastric cancer via suppression of PTGS2 and BCL2 expressions regulated by ERK1/2 and P38 signal axis, suggesting PTGS2 might be employed as an adjunctive therapeutic target for reversal of the chemoresistance in a subset of cisplatin resistant gastric cancer.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Ciclo-Oxigenase 2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/tratamento farmacológico , Animais , Celecoxib/farmacologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Anticancer Drugs ; 30(10): 973-982, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31503014

RESUMO

Fibroblast growth factor-2 (FGF2) is a protein ligand, which exerts essential roles in development, angiogenesis, and tumor progression via activation of the downstream signaling cascades. Accumulating evidence has demonstrated that FGF2 is involved in the progression of ovarian cancer, providing a novel potential target for ovarian cancer therapy. In this study, we showed that FGF2 is significantly increased in ovarian tumors, and is negatively associated with the overall survival of ovarian cancer by database analysis. A short peptide obtained from a heptapeptide phage display library suppressed FGF2-induced proliferation, migration, and invasion of the p53-null epithelial ovarian cancer (EOC) cells. Further investigations revealed that the short peptide antagonized the effects of FGF2 on G0/G1 to S cell phase promotion, cyclin D1 expression, and MAPK and Akt signaling activation, which might contribute to the mechanism underlying the inhibitory effects of the short peptide on the aggressive phenotype of the ovarian cancer cells triggered by FGF2. Moreover, the short peptide might have the potentials of reversing FGF2-induced resistance to the doxorubicin via downregulation of the antiapoptotic proteins and counteracting of the antiapoptotic effects of FGF2 on p53-null EOC cells. Taken together, the short peptide targeting FGF2 may provide a novel strategy for improving the therapeutic efficiency in a subset of EOC.


Assuntos
Carcinoma Epitelial do Ovário/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Biblioteca de Peptídeos , Fase S/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
3.
Front Pharmacol ; 10: 836, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440159

RESUMO

The prostaglandin-endoperoxide synthase-2 (PTGS2) plays essential roles in diverse pathological process. Although recent studies implied that PTGS2 was closely related with chemoresistance, the precise roles and the underlying mechanisms of PTGS2 in the developing process of chemoresistance in non-small cell lung cancer (NSCLC) remained elusive. In the present study, we revealed a novel molecular mechanism of PTGS2 implicated in the chemoresistance of NSCLC and proposed a model for the positive feedback regulation of PTGS2 in the process of developing resistance phenotype in NSCLC cells. Our results demonstrated that cisplatin induced PTGS2 expression through the ROS-ERK1/2-NF-κB signaling axis. The prostaglandin E2 (PGE2) derived from PTGS2 catalyzation further strengthened PTGS2 expression via the PGE2-EPs-ERK1/2 positive feedback loop, which induced multidrug resistance of NSCLC cells through up-regulation of BCL2 expression and the subsequent attenuation of cell apoptosis. Consistently, high levels of both PTGS2 and BCL2 were closely associated with poor survival in NSCLC patients. Inhibition of PTGS2 significantly reversed the chemoresistance in the resistant NSCLC in vitro and in vivo. Our results suggested that PTGS2 might be employed as an adjunctive therapeutic target for improving the response to the therapeutic agents in a subset of resistant NSCLC.

4.
J Cell Physiol ; 234(3): 2500-2510, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30317562

RESUMO

Previous studies suggest that specific binding to the complex consisting of fibroblast growth factor receptor-1 (FGFR1) and the coreceptor beta-Klotho (KLB) is the premise for human FGF19 and FGF21 activating the downstream signaling cascades, and regulating the metabolic homeostasis. However, it was found that human FGF21 loses its ability to bind to FGFR1-KLB after iodination with Na125 I and chloramine T, whereas human FGF19 retained its affinity for FGFR1-KLB even after iodination. The molecular mechanisms underlying these differences remained elusive. In this study, we first demonstrated that an intramolecular disulfide bond was formed between cysteine-102 and cysteine-121 in FGF21, implying that the oxidation of the cysteine to cysteic acid, which may interfere with the active conformation of FGF21, did not occur during the iodination procedures, and thus ruled out the possibility of the two conserved cysteine residues mediating the loss of FGF21 binding affinity to FGFR1-KLB upon iodination. Site-directed mutagenesis and molecular modeling were further applied to determine the residue(s) responsible for the loss of FGFR1-KLB affinity. The results showed that mutation of a single tyrosine-207, but not the other five tyrosine residues in FGF21, to a phenylalanine retained the FGFR1-KLB affinity of FGF21 even after iodination, whereas replacing the corresponding phenylalanine residue with tyrosine in FGF19 did not alter its binding affinity to FGFR1-KLB, but decreased the receptor binding ability of the iodinated protein, suggesting that tyrosine-207 is the crucial amino acid responsible for the loss of specifying FGFR1-KLB affinity of the iodinated FGF21.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Proteínas de Membrana/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Aminoácidos/efeitos dos fármacos , Aminoácidos/genética , Linhagem Celular , Cloraminas/farmacologia , Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , Halogenação , Homeostase/genética , Humanos , Proteínas Klotho , Oxirredução/efeitos dos fármacos , Fenilalanina/genética , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Iodeto de Sódio/farmacologia , Compostos de Tosil/farmacologia , Tirosina/efeitos dos fármacos
5.
Oncotarget ; 7(18): 26709-23, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27050374

RESUMO

Multidrug resistance protein-1 (MDR1) has been proven to be associated with the development of chemoresistance to imatinib (Glivec, STI571) which displays high efficacy in treatment of BCR-ABL-positive chronic myelogenous leukemia (CML). However, the possible mechanisms of MDR1 modulation in the process of the resistance development remain to be defined. Herein, galectin-1 was identified as a candidate modulator of MDR1 by proteomic analysis of a model system of leukemia cell lines with a gradual increase of MDR1 expression and drug resistance. Coincidently, alteration of galectin-1 expression triggers the change of MDR1 expression as well as the resistance to the cytotoxic drugs, suggesting that augment of MDR1 expression engages in galectin-1-mediated chemoresistance. Moreover, we provided the first data showing that NF-κB translocation induced by P38 MAPK activation was responsible for the modulation effect of galectin-1 on MDR1 in the chronic myelogenous leukemia cells. Galectin-1 might be considered as a novel target for combined modality therapy for enhancing the efficacy of CML treatment with imatinib.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Galectina 1/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA