RESUMO
Purpose: Renal cell carcinoma (RCC) is the most common and lethal type of urogenital cancer, with one-third of new cases presenting as metastatic RCC (mRCC), which, being the seventh most common cancer in men and the ninth in women, poses a significant challenge. For patients with poor prognosis, temsirolimus (TEM) has been approved for first-line therapy, possessing pharmacodynamic activities that block cancer cell growth and inhibit proliferation-associated proteins. However, TEM suffers from poor water solubility, low bioavailability, and systemic side effects. This study aims to develop a novel drug formulation for the treatment of RCC. Methods: In this study, amphiphilic block copolymer (poly(ethylene glycol) monomethyl ether-poly(beta-amino ester)) (mPEG-PBAE) was utilized as a drug delivery vehicle and TEM-loaded micelles were prepared by thin-film hydration method by loading TEM inside the nanoparticles. Then, the molecular weight of mPEG-PBAE was controlled to make it realize hydrophobic-hydrophilic transition in the corresponding pH range thereby constructing pH-responsive TEM-loaded micelles. Characterization of pH-responsive TEM-loaded nanomicelles particle size, potential and micromorphology while its determination of drug-loading properties, in vitro release properties. Finally, pharmacodynamics and hepatorenal toxicity were further evaluated. Results: TEM loading in mPEG-PBAE increased the solubility of TEM in water from 2.6 µg/mL to more than 5 mg/mL. The pH-responsive TEM-loaded nanomicelles were in the form of spheres or spheroidal shapes with an average particle size of 43.83 nm and a Zeta potential of 1.79 mV. The entrapment efficiency (EE) of pH-responsive TEM nanomicelles with 12.5% drug loading reached 95.27%. Under the environment of pH 6.7, the TEM was released rapidly within 12 h, and the release rate could reach 73.12% with significant pH-dependent characteristics. In vitro experiments showed that mPEG-PBAE preparation of TEM-loaded micelles had non-hemolytic properties and had significant inhibitory effects on cancer cells. In vivo experiments demonstrated that pH-responsive TEM-loaded micelles had excellent antitumor effects with significantly reduced liver and kidney toxicity. Conclusion: In conclusion, we successfully prepared pH-responsive TEM-loaded micelles. The results showed that pH-responsive TEM-loaded micelles can achieve passive tumor targeting of TEM, and take advantage of the acidic conditions in tumor tissues to achieve rapid drug release.
Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Micelas , Polietilenoglicóis , Sirolimo , Sirolimo/administração & dosagem , Sirolimo/química , Sirolimo/farmacocinética , Sirolimo/farmacologia , Sirolimo/análogos & derivados , Humanos , Polietilenoglicóis/química , Concentração de Íons de Hidrogênio , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Tamanho da Partícula , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , MasculinoRESUMO
Bacterial membrane vesicles (BMVs) are crucial biological vehicles for facilitating interspecies and interkingdom interactions. However, the extent and mechanisms of BMV involvement in bacterial-algal communication remain elusive. This study provides evidence of BMVs delivering cargos to targeted microalgae. Membrane vesicles (MVs) from Chitinimonas prasina LY03 demonstrated an algicidal profile similar to strain LY03. Further investigation revealed Tambjamine LY2, an effective algicidal compound, selectively packaged into LY03-MVs. Microscopic imaging demonstrated efficient delivery of Tambjamine LY2 to microalgae Heterosigma akashiwo and Thalassiosira pseudonana through membrane fusion. In addition, the study demonstrated the versatile cargo delivery capabilities of BMVs to algae, including the transfer of MV-carried nucleic acids into algal cells and the revival of growth in iron-depleted microalgae by MVs. Collectively, our findings reveal a previously unknown mechanism by which algicidal bacteria store hydrophobic algicidal compounds in MVs to trigger target microalgae death and highlight BMV potency in understanding and engineering bacterial-algae cross-talk.
Assuntos
Bactérias , Microalgas , Microalgas/metabolismo , Bactérias/metabolismo , Membrana Celular/metabolismo , Interações MicrobianasRESUMO
Introduction: Chimeric antigen receptor natural killer (CAR-NK) cells have been found to be successful in treating hematologic malignancies and present potential for usage in solid tumors. Methods: In this study, we created CD276-targeted CAR-expressing NK cells from pluripotent stem cells (iPSC CD276-targeted CAR-NK cells) and evaluated their cytotoxicity against esophageal squamous cell carcinoma (ESCC) using patient-specific organoid (PSO) models comprising of both CD276-positive and CD276-negative adjacent epithelium PSO models (normal control PSO, NC PSO) as well as primary culture of ESCC cell models. In addition, in vitro and in vivo models such as KYSE-150 were also examined. iPSC NK cells and NK-free media were used as the CAR-free and NK-free controls, respectively. Results: The positive CD276 staining was specifically detected on the ESCC membrane in 51.43% (54/105) of the patients of all stages, and in 51.35% (38/74) of stages III and IV. The iPS CD276-targeted CAR-NK cells, comparing with the iPS NK cells and the NK-free medium, exhibited specific and significant cytotoxic activity against CD276-positive ESCC PSO rather than CD276-negative NC PSO, and exhibited significant cytotoxicity against CD276-expressing cultured ESCC cells, as well as against CD276-expressing KYSE-150 in vitro and in BNDG mouse xenograft. Discussion: The efficacy of the iPSC CD276-targeted CAR-NK cells demonstrated by their successful treatment of CD276-expressing ESCC in a multitude of pre-clinical models implied that they hold tremendous therapeutic potential for treating patients with CD276-expressing ESCC.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/metabolismo , Células Matadoras Naturais , Antígenos B7/metabolismoRESUMO
OBJECTIVE: ω-3 polyunsaturated fatty acids (PUFA) are a key modifiable factor in the intervention of type 2 diabetes, yet recommendations for dietary consumption of ω-3 PUFA in type 2 diabetes remain ambiguous and controversial. Here, we revisit the subject in the light of population pharmacokinetic-pharmacodynamic (PPK-PD) modeling and propose a threshold for intake. RESEARCH DESIGN AND METHODS: Plasma levels of ω-3 PUFA and glycosylated hemoglobin (HbA1c) were measured as pharmacokinetic and pharmacodynamic indicator, respectively. The nonlinear mixed effect analysis was used to construct a PPK-PD model for ω-3 PUFA and to quantify the effects of FADS gene polymorphism, age, liver and kidney function, and other covariables. RESULTS: Data from 161 patients with type 2 diabetes in the community were modeled in a two-compartment model with primary elimination, and HDL was a statistically significant covariate. The simulation results showed that HbA1c showed a dose-dependent decrease of ω-3 PUFA plasma level. A daily intake of ω-3 PUFA at 0.4 g was sufficient to achieve an HbA1c level of 7% in more than 95% of patients. CONCLUSIONS: PPK/PD modeling was proposed as a multilevel analytical framework to quantitatively investigate finer aspects of the complex relationship between ω-3 PUFA and type 2 diabetes on genetic and non-genetic influence factors. The results support a beneficial role for ω-3 PUFA in type 2 diabetes and suggested the intake threshold. This new approach may provide insights into the interaction of the two and an understanding of the context in which changes occur.
Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos Ômega-3 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , FígadoRESUMO
BACKGROUND: Novel ß-lactams have in vitro activity against Pseudomonas aeruginosa (PA), but their clinical performances and the selection criteria for practical use are still not clear. We aimed to evaluate the efficacy of novel ß-lactams for PA infection in various sites and to compare the efficacy of each agent. METHODS: We searched PubMed, Embase, Cochrane Library, and Web of Science for randomized controlled trials that used novel ß-lactams to treat PA infection. The primary outcomes were clinical cure and favorable microbiological response. Subgroup analyses were performed based on drug type, drug resistance of pathogens, and site of infection. Network meta-analysis was carried out within a Bayesian framework. RESULTS: In all studies combined (16 randomized controlled trials), novel ß-lactams indicated comparable performance to other treatment regimens in both outcome measures (relative risk = 1.04; 95% confidence interval 0.94-1.15; P = .43) (relative risk = 0.97; 95% confidence interval 0.81-1.17; P = .76). Subgroup analyses showed that the efficacy of ceftolozane-tazobactam (TOL-TAZ), ceftazidime-avibactam (CAZ-AVI), imipenem-cilastatin-relebactam, and cefiderocol had no apparent differences compared to control groups among different infection sites, drug types and drug resistance of PA. In network meta-analysis, the results showed no statistically significant differences between TOL-TAZ, CAZ-AVI, and cefiderocol. CONCLUSIONS: TOL-TAZ, CAZ-AVI, imipenem-cilastatin-relebactam, and cefiderocol are not inferior to other agents in the treatment of PA infection. Their efficacy is also comparable between TOL-TAZ, CAZ-AVI, and cefiderocol.
Assuntos
Antibacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , beta-Lactamas , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , beta-Lactamas/uso terapêutico , beta-Lactamas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Combinação de Medicamentos , Compostos Azabicíclicos/uso terapêutico , Tazobactam/uso terapêutico , Tazobactam/farmacologia , Ceftazidima/uso terapêutico , Cefalosporinas/uso terapêuticoRESUMO
Introduction: The clinical efficacy of CAR-NK cells against CD19-expressing blood cancers has been demonstrated, and they have shown potential for treating solid tumors as well. However, the efficacy of CAR-NK cells for treating human oral tongue squamous cell carcinoma (OTSCC) has not been examined. Methods: We assessed MUC1 expression in human OTSCC tissue and a cell line using immunohistochemistry and immunofluorescence. We constructed NK cells that express CAR targeted to MUC1 from pluripotent stem cells (iPSC-derived MUC1-targeted CAR-NK cells) and evaluated their effectiveness against OTSCC in vitro using the xCELLigence Real-Time Cell Analysis system and CCK8 assay, and in vivo by measuring xenograft growth daily in BNDG mice treated with MUC1-targeted CAR-NK cells. As controls, we used iPSC-derived NK cells and NK-free media, which were CAR-free and blank, respectively. Results: MUC1 expression was detected in 79.5% (66/83) of all OTSCC patients and 72.7% (24/33) of stage III and IV. In stage III and IV MUC1 positive OTSCC, 63.6% (21/33) and 48.5% (16/33) patients had a MUC1-positive cancer cell rate of more than 50% and 80%, respectively. The iPSC-derived MUC1-targeted CAR-NK cells exhibited significant cytotoxicity against MUC1-expressing OTSCC cells in vitro, in a time- and dose-dependent manner, and showed a significant inhibitory effect on xenograft growth compared to both the iPSC-derived NK cells and the blank controls. We observed no weight loss, severe hematological toxicity or NK cell-mediated death in the BNDG mice. Conclusion: The MUC1-targeted CAR-NK cells had significant efficacy against human OTSCC, and their promising therapeutic response warrants further clinical trials.
Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas/terapia , Neoplasias da Língua/terapia , Células Matadoras Naturais , Linhagem Celular , Língua/metabolismo , Mucina-1/genética , Mucina-1/metabolismoRESUMO
Objectives: To investigate the prevalence of post-traumatic stress disorder in intensive care unit survivors, and disorder's correlation with analgesia use. METHODS: The single-centre retrospective cohort study was conducted at the First Affiliated Hospital of Jinan University, China, and comprised data from February 2021 to January 2022 related to patients of either gender aged =18 years who were admitted to the intensive care unit and were successfully transferred out to the general ward. Post- traumatic stress disorder Checklist-Civilian Version scale was used for follow-up within one month of getting transferred out of intensive care. Data was analysed using Empower Stats. RESULTS: Of the 121 patients with mean age 54.34±18.19 years, 52(43%) were positive for post-traumatic stress disorder; 32(61.5%) males and 20(38.5%) females with mean age 54.48±19.56 years.The remaining 69(57%) patients were negative; 40(58%) males and 29(42%) females with mean age 54.23±17.24 years (p>0.05). The positive rate of re- experiencing symptoms was noted in 68(56.20%) patients. Analgesia usage was positive in 61(50.4%) cases and negative in 60(49.6%) cases. Compared to the non-analgesic group, the risk of post-traumatic stress disorder occurrence in the analgesic group wassignificantly high (p=0.018). The duration of analgesia usage 24-48h was also significant (p=0.017). CONCLUSIONS: There was a high prevalence of post-traumatic stress disorder in intensive care unit survivors, which was affected by the use of analgesicsin intensive care settings.
Assuntos
Transtornos de Estresse Pós-Traumáticos , Masculino , Feminino , Humanos , Idoso , Adulto , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Estudos Retrospectivos , Prevalência , Unidades de Terapia Intensiva , Sobreviventes , China/epidemiologia , Analgésicos/uso terapêuticoRESUMO
The application of flue gas desulfurization gypsum (FGDG) improves the soil structure, reduces soil pH, and accelerates soil salt leaching. Biochar amendment to soil can affect the soil infiltration rate, increase soil porosity, decrease soil bulk density, and enhance the water retention capacity. This study investigated the interactive effect of FGDG and biochar on water infiltration characteristics and physicochemical properties as well as determined the optimal amendment rate as a saline-alkaline soil conditioner. Seven experimental schemes were designed, and the newly reclaimed cultivated soil from Pingtan Comprehensive Experimental Zone in Fujian Province, China, was used in an indoor soil column experiment to simulate soil infiltration. Five models were employed to describe the infiltration process. The power function was used to represent the dynamic process of the wetting front. The conclusions of this study are as follows: (1) there was a reduction in the infiltration capacity of saline-alkaline soil (sandy soil) in each treatment, and the application of FGDG alone had the highest inhibition effect compared to the control (CK). The Kostiakov model provides the best fit for the experimental data of soil cumulative infiltration. (2) All treatments increased the total porosity and water content of saline-alkali soil, with the combined application of FGDG and biochar found to be more effective. (3) The application of FGDG alone or in combination with biochar decreased the pH and increased the electrical conductivity of the saline-alkali soil significantly, with the combined application having the most significant effect. In contrast, soil amended with biochar alone had minimal effect on the pH and EC of the soil. (4) The best improvement ratio was achieved with the F1B2 combination (75 g/kg FGDG + 30 g/kg biochar).
Assuntos
Sulfato de Cálcio , Solo , Sulfato de Cálcio/química , Solo/química , Monitoramento Ambiental , Carvão Vegetal , Gases , Álcalis , ÁguaRESUMO
As an important coastal "blue carbon sink," mangrove ecosystems contain microbial communities with an as-yet-unknown high species diversity. Exploring the assemblage and structure of sediment microbial communities therein can aid in a better understanding of their ecosystem functioning, such as carbon sequestration and other biogeochemical cycles in mangrove wetlands. However, compared to other biomes, the study of mangrove sediment microbiomes is limited, especially in diverse mangrove ecosystems at a large spatial scale, which may harbor microbial communities with distinct compositions and functioning. Here, we analyzed 380 sediment samples from 13 and 8 representative mangrove ecosystems, respectively, in China and South America and compared their microbial features. Although the microbial community compositions exhibited strong distinctions, the community assemblage in the two locations followed analogous patterns: the assemblages of the entire community, abundant taxa, rare taxa, and generalists were predominantly driven by stochastic processes with significant distance-decay patterns, while the assembly of specialists was more likely related to the behaviors of other organisms in or surrounding the mangrove ecosystems. In addition, co-occurrence and topological network analysis of mangrove sediment microbiomes underlined the dominance of sulfate-reducing prokaryotes in both the regions. Moreover, we found that more than 70% of the keystone and hub taxa were sulfate-reducing prokaryotes, implying their important roles in maintaining the linkage and stability of the mangrove sediment microbial communities. This study fills a gap in the large-scale analysis of microbiome features covering distantly located and diverse mangrove ecosystems. Here, we propose a suggestion to the Mangrove Microbiome Initiative that 16S rRNA sequencing protocols should be standardized with a unified primer to facilitate the global-scale analysis of mangrove microbiomes and further comparisons with the reference data sets from other biomes.IMPORTANCEMangrove wetlands are important ecosystems possessing valuable ecological functions for carbon storage, species diversity maintenance, and coastline stabilization. These functions are greatly driven or supported by microorganisms that make essential contributions to biogeochemical cycles in mangrove ecosystems. The mechanisms governing the microbial community assembly, structure, and functions are vital to microbial ecology but remain unclear. Moreover, studying these mechanisms of mangrove microbiomes at a large spatial scale can provide a more comprehensive insight into their universal features and can help untangle microbial interaction patterns and microbiome functions. In this study, we compared the mangrove microbiomes in a large spatial range and found that the assembly patterns and key functional guilds of the Chinese and South American mangrove microbiomes were analogous. The entire communities exhibited significant distance-decay patterns and were strongly governed by stochastic processes, while the assemblage of specialists may be merely associated with the behaviors of the organisms in mangrove ecosystems. Furthermore, our results highlight the dominance of sulfate-reducing prokaryotes in mangrove microbiomes and their key roles in maintaining the stability of community structure and functions.
RESUMO
BACKGROUND: Keystone taxa are drivers of microbiome structure and functioning, which may play critical roles in microbiome-level responses to recalcitrant pollution and are a key to bioremediation. However, the characterization and manipulation of such taxa is a major challenge due to the complexity of microbial communities and rapid turnover in both time and space. Here, microcosms were set up with benzo[a]-pyrene (BaP) and/or nitrate based on C-rich, S-rich, and N-limited mangrove sediments as reductive experimental models to trigger and track the turnover of keystone taxa to address this challenge. RESULTS: Based on microbial co-occurrence network analysis, two keystone taxa, Sulfurovum and Sulfurimonas, were found to exhibit significant role transitions in different microcosms, where these two taxa played nonkeystone roles with neutral relationships in in situ mangrove sediments. However, Sulfurimonas transitioned to be keystone taxa in nitrate-replenished microcosms and formed a keystone guild with Thioalkalispira. Sulfurovum stood out in BaP-added microcosms and mutualized in a densely polycyclic aromatic hydrocarbon (PAH)-degrader-centric keystone guild with Novosphingobium and Robiginitalea, where 63.25% of added BaP was removed. Under the occurrence of nitrate and BaP, they simultaneously played roles as keystone taxa in their respective guilds but exhibited significant competition. Comparative genomics and metagenome-assembled genome (MAG) analysis was then performed to reveal the metabolic potential of those keystone taxa and to empirically deduce their functional role in keystone guilds. Sulfurimonas possesses a better sense system and motility, indicative of its aggressive role in nitrate acquisition and conversion; Sulfurovum exhibited a better ability for oxidation resistance and transporting nutrients and electrons. High-efficiency thermal asymmetric interlaced polymerase reaction (hiTAIL-PCR) and enhanced green fluorescent protein (eGFP)-labeling approaches were employed to capture and label the BaP key degrader to further experimentally verify the roles of keystone taxa Sulfurovum in the keystone guilds. Observations of the enhancement in reactive oxygen species (ROS) removal, cell growth, and degradation efficiency by co-culture of isolated keystone taxa strains experimentally demonstrated that Sulfurovum contributes to the BaP degradative microbiome against BaP toxicity. CONCLUSIONS: Our findings suggest that the combined use of co-occurrence network analysis, comparative genomics, and co-culture of captured keystone taxa (3C-strategy) in microbial communities whose structure is strongly shaped by changing environmental factors can characterize keystone taxa roles in keystone guilds and may provide targets for manipulation to improve the function of the microbiome. Video Abstract.
Assuntos
Microbiota , Nitratos , Nitratos/metabolismo , Benzo(a)pireno/metabolismo , Bactérias , Microbiota/genética , Enxofre/metabolismo , OxirreduçãoRESUMO
In addition to the organic pollutants and disturbance to the microbial, plant and animal systems, oil contamination can also enrich opportunistic pathogens. But little is known about whether and how the most common coastal oil-contaminated water bodies act as reservoirs for pathogens. Here, we delved into the characteristics of pathogenic bacteria in coastal zones by constructing seawater-based microcosms with diesel oil as a pollutant. 16S rRNA gene full-length sequencing and genomic exploration revealed that pathogenic bacteria with genes involved in alkane or aromatic degradation were significantly enriched under oil contamination, providing a genetic basis for them to thrive in oil-contaminated seawater. Moreover, high-throughput qPCR assays showed an increased abundance of the virulence gene and enrichment in antibiotics resistance genes (ARGs), especially those related to multidrug resistance efflux pumps, and their high relevance to Pseudomonas, enabling this genus to achieve high levels of pathogenicity and environmental adaptation. More importantly, infection experiments with a culturable P. aeruginosa strain isolated from an oil-contaminated microcosm provided clear evidence that the environmental strain was pathogenic to grass carp (Ctenopharyngodon idellus), and the highest lethality rate was found in the oil pollutant treatment, demonstrating the synergistic effect of toxic oil pollutants and pathogens on infected fish. A global genomic investigation then revealed that diverse environmental pathogenic bacteria with oil degradation potential are widely distributed in marine environments, especially in coastal zones, suggesting extensive pathogenic reservoir risks in oil-contaminated sites. Overall, the study uncovered a hidden microbial risk, showing that oil-contaminated seawater could be a high-risk pathogen reservoir, and provides new insights and potential targets for environmental risk assessment and control.
RESUMO
Gibberellic acids had been proven to improve the fruit quality and storability by delaying deterioration and maintaining the antioxidant system. In this study, the effect of GA3 spraying at different concentrations (10, 20, and 50 mg L-1) on the quality of on-tree preserved 'Shixia' longan was examined. Only 50 mg L-1 GA3 significantly delayed the decline of soluble solids (22.0% higher than the control) and resulted in higher total phenolics content (TPC), total flavonoid content (TFC), and phenylalanine ammonia-lyase activity in pulp at the later stages. The widely targeted metabolome analysis showed that the treatment reprogrammed secondary metabolites and up-regulated many tannins, phenolic acids, and lignans during the on-tree preservation. More importantly, the preharvest 50 mg L-1 GA3 spraying (at 85 and 95 days after flowering) led to significantly delayed pericarp browning and aril breakdown, as well as lower pericarp relative conductivity and mass loss at the later stages of room-temperature storage. The treatment also resulted in higher antioxidants in pulp (vitamin C, phenolics, and reduced glutathione) and pericarp (vitamin C, flavonoids, and phenolics). Therefore, preharvest 50 mg L-1 GA3 spraying is an effective method for maintaining the quality and up-regulating antioxidants of longan fruit during both on-tree preservation and room-temperature storage.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Gliomas are common malignant intracranial tumors that have worse prognosis and pose a serious threat to human health. The Kangliu pill (KLP) is an innovative herbal compound from Xuanwu Hospital of Capital Medical University that has been clinically used for the treatment of gliomas for more than 40 years, and is one of the few drugs for primary treatment of this disorder. But the fundamental molecular mechanisms and pathways of KLP are not clear. AIM OF THE STUDY: To investigate the therapeutic mechanism of KLP in the treatment of gliomas. MATERIALS AND METHODS: An in situ xenograft model of red fluorescent protein-labeled human glioma cell line (U87-RFP) in BALB/c-nu mouse was established, and the therapeutic effect of KLP on gliomas was assessed by tumor weights and fluorescence areas. A quantitative proteomics approach using tandem mass tags combined with liquid chromatography-tandem mass spectrometry was performed to explore differentially expressed proteins (DEPs) in glioma tissues, and bioinformatics analyses including Gene Ontology analysis, pathway analysis, and network analysis were performed to analyze the proteins involved in the network therapeutic mechanisms responsible for key metabolic pathways. Cytological experiments corroborated the above analysis results. RESULTS: Network pharmacology approach screened 246 bioactive compounds contained in KLP, targeting 724 proteins and 173 potential targets of KLP for glioma treatment. The important targets obtained after visualizing the PPI network were AKT1, INS, GAPDH, SRC, TP53, etc. The KEGG enrichment results showed that 9 proteins were related to cancer, including Pathways in cancer, PI3K/AKT signaling pathway, etc. KLP had antitumor activity in gliomas, which reduced tumor weights and fluorescence areas. A number of DEPs possibly associated with gliomas were identified through quantitative proteomic techniques. Among these DEPs, 50 (25 upregulated and 25 downregulated) were identified that might be associated with KLP action. Bioinformatics showed that these 50 DEPs were mainly focused on focal adhesion, extracellular matrix (ECM)-receptor interactions, and the PI3K-Akt signaling pathway. Cytological experiments revealed that KLP significantly inhibited the proliferation and promoted apoptosis of U87-MG human glioma cells, and its mechanism was through the inhibition of PI3K/AKT signaling pathway. CONCLUSION: Therapeutic effect of KLP was regulation of multiple pathways in the treatment of gliomas. In specific, it interacts through the PI3K-Akt signaling pathway. This work may contribute proteomic insights for further research on the medical treatment of glioma using KLP.
Assuntos
Medicamentos de Ervas Chinesas , Glioma , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Glioma/metabolismo , Transdução de Sinais , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento MolecularRESUMO
Although the effects of phytohormones (mainly salicylic acid) on the storability of longan fruit have been reported, the relationship between postharvest hormone variation and signal transduction and storability remains unexplored. The basis of physiology, biochemistry, hormone content and signalling for the storability difference at room-temperature between 'Shixia' and 'Luosanmu' longan fruit were examined. 'Luosanmu' longan exhibited faster pericarp browning, aril breakdown and rotting during storage. 'Luosanmu' pericarp exhibited higher malondialdehyde but faster decreased total phenolics, flavonoid, glutathione, vitamin C, catalase activity and gene expression. Higher H2O2 and malondialdehyde but lower glutathione, glutathione-reductase and peroxidase activities, while higher activities and gene expressions of polygalacturonase, ß-galactosidase and cellulose, lower covalent-soluble pectin, cellulose and hemicellulose but higher water-soluble pectin were observed in 'Luosanmu' aril. Lower abscisic acid and methyl jasmonate but higher expressions of LOX2, JAZ and NPR1 in pericarp, while higher abscisic acid, methyl jasmonate and salicylic acid together with higher expressions of ABF, JAZ, NPR1 and PR-1 in 'Luosanmu' aril were observed. In conclusion, the imbalance between the accumulation and scavenging of active oxygen in 'Luosanmu' longan might induce faster lipid peroxidation and senescence-related hormone signalling and further the polymerization of phenolics in pericarp and polysaccharide degradation in aril.
RESUMO
BACKGROUND: Vancomycin area under the curve/minimum inhibitory concentration (AUC/MIC) has been proposed as a therapeutic drug monitoring (TDM) target to dose vancomycin. It is time-consuming to estimate AUCs using traditional methods. A two-point trough-peak method is more straightforward for calculating the vancomycin AUC. However, the technique and the AUC/MIC target have not been validated in Chinese patients. AIM: To compare the clinical outcomes of vancomycin therapy in Chinese older adults (aged > 60 years) between the trough-only and the two-point peak-trough AUC TDM approaches. METHOD: The patients were divided into study and control groups according to TDM approaches. A trough-based TDM was used in the control group (target trough level 15-20 mg/L). Stanford University has provided a method to predict vancomycin AUC using peak-valley concentration alone (two-point method). A two-point trough-peak TDM approach was employed in the study group (target AUC/MIC ≥ 400). The effect of vancomycin was evaluated in terms of clinical findings, laboratory values, and bacteriologic responses. The effects of treatment and kidney functions were compared between the two groups. RESULTS: A total of 389 patients met the study inclusion criteria, and 189 were excluded based on the exclusion criteria. Of the 200 patients, 80 received the two-point TDM approach (the study group), and 120 were monitored using the trough-based approach (the control group). The average age was 69.8 ± 7.1 years. Staphylococcus aureus (34%) was the most common Gram-positive bacteria. No vancomycin-related nephrotoxicity was observed in either group. The percentages of patients with an excellent response to vancomycin therapy were significantly higher in the study group than in the control group, 90% (72/80) versus 73.3% (88/120), P = 0.0039. CONCLUSION: The two-point peak-trough method is practical for obtaining vancomycin AUC. The AUC/MIC ≥ 400 target demonstrates treatment effectiveness and safety in older Chinese patients.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Idoso , Pessoa de Meia-Idade , Vancomicina , Área Sob a Curva , Antibacterianos , Infecções Estafilocócicas/tratamento farmacológico , Monitoramento de Medicamentos/métodos , Estudos RetrospectivosRESUMO
BACKGROUND: Significant changes in the pathophysiology of older critically ill patients may affect the pharmacokinetics and pharmacodynamics of teicoplanin. This study aimed to determine the optimal teicoplanin blood level in this patient population. METHODS: 128 older critically ill and 86 older non-critically ill patients were involved and analyzed. RESULTS: The target thresholds of teicoplanin blood concentrations in older critically ill patients and non-critically ill patients should be 31.4mg/L and 15.3mg/L, respectively. The dose of teicoplanin in older critically ill patients should be greater than 800 mg to achieve the target blood level. CONCLUSION: An individualized dosing approach of teicoplanin based on therapeutic drug monitoring is necessary for older critically ill patients.
Assuntos
Antibacterianos/farmacocinética , Estado Terminal , Monitoramento de Medicamentos/métodos , Teicoplanina/farmacocinética , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , Teicoplanina/administração & dosagemRESUMO
Background: Warfarin is a commonly used oral anticoagulant. It has a narrow therapeutic window and wide variation in individualized dosing, and is used clinically for the treatment of thromboembolic diseases. Due to the widespread use of traditional Chinese medicine (TCM) in China and the complex composition and diverse mechanisms of action of TCM, the combination of TCM and warfarin in patients has led to fluctuations in the international normalized ratio of warfarin or bleeding. To ensure rational clinical use, we summarize the TCMs with which warfarin interacts and the possible mechanisms, with a view to providing a clinical reference. Aim of the study: To summarize the mechanisms by which Chinese herbal medicines affect the enhancement or weakening of the anticoagulant effect of warfarin, to provide theoretical references for clinicians and pharmacists to use warfarin safely and rationally, and to avoid the adverse effects associated with the combination of Chinese herbal medicines and warfarin. Methods: A computerized literature search of electronic databases, including PubMed, MEDLINE, Cochrane Library, Web of Science (WOS), China National Knowledge Infrastructure (CNKI) and WANFANG Data was performed. Key words used in the literature search were "warfarin", "Chinese medicine", "traditional Chinese medicine", "Chinese patent medicine" etc. and their combinations in a time limit from January 1, 1990 to May 1, 2021. A total of 64 articles were obtained following the selection process, including clinical reports, pharmacological experiments and in vitro experiments which were reviewed to determine the mechanism of the anticoagulant effect of herbal medicine on warfarin. Results: The mechanisms affecting the anticoagulant effect of warfarin are complex, and herbal medicines may enhance and diminish the anticoagulant effect of warfarin through a variety of mechanisms; thus, clinical use needs to be cautious. Some herbal medicines have shown inconsistent results in both in vivo and ex vivo experiments, pharmacology and clinical studies, and should be the focus of future research. Conclusion: With the widespread use of TCM, the combination of warfarin and TCM is more common. This article will promote clinicians' knowledge and understanding of the TCMs which interact with warfarin, in order to avoid the occurrence of adverse clinical treatment processes, and improve the efficacy and safety.
RESUMO
Denitrification is a vital link in the global bio-nitrogen cycle. Here, we isolated a strain (M9-3-2T) that is a novel benzo[a]pyrene (BaP)-tolerant, anaerobic and aerobic denitrifying bacterium from a continuous BaP-enrichment cultured mangrove sediment. In silico comparative genomics and taxonomic analysis clearly revealed that strain M9-3-2T (=MCCC 1K03313T=JCM 32045T) represents a novel species of a novel genus named as Nitrogeniibacter mangrovi gen. nov., sp. nov., belonging to family Zoogloeaceae, order Rhodocyclales. In addition, the species Azoarcus pumilus is transferred into genus Aromatoleum and named Aromatoleum pumilum comb. nov. The predominant respiratory quinone of strain M9-3-2T was ubiquinone-8 and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and three unidentified aminophospholipids. In this study, the capacity of strain M9-3-2T to eliminate nitrate was detected under anaerobic and aerobic conditions, and the removal rates of nitrate were 6.1×10-6 µg N/l/h/cell and 3×10-7 µg N/l/h/cell, respectively. Our results suggested that strain M9-3-2T could play an important role in the nitrogen removal regardless of the presence of oxygen in natural or/and man-made ecosystems.
Assuntos
Azoarcus , Betaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Anaerobiose , Azoarcus/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Betaproteobacteria/isolamento & purificação , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Áreas AlagadasRESUMO
Aphids are associated with an array of symbionts that have diverse ecological and evolutionary effects on their hosts. To date, symbiont communities of most aphid species are still poorly characterized, especially for the social aphids. In this study, high-throughput 16S rDNA amplicon sequencing was used to assess the bacterial communities of the social aphid Pseudoregma bambucicola, and the differences in bacterial diversity with respect to ant attendance and time series were also assessed. We found that the diversity of symbionts in P. bambucicola was low and three dominant symbionts (Buchnera, Pectobacterium and Wolbachia) were stably coexisting. Pectobacterium may help P. bambucicola feed on the hard bamboo stems, and genetic distance analysis suggests that the Pectobacterium in P. bambucicola may be a new symbiont species. Wolbachia may be associated with the transition of reproduction mode or has a nutritional role in P. bambucicola. Statistical tests on the diversity of bacterial communities in P. bambucicola suggest that aphid populations attended by ants usually have a significantly higher evenness than populations without ant attendance but there was no significant difference among aphid populations from different seasons.
RESUMO
Mangrove ecosystems are natural nitrogen removal systems that are primarily mediated by nitrogen cycle microorganisms, but their relative contributions to nitrogen transformation and removal in mangrove sediments under anthropogenic nitrogen input needs further resolution and characterization. Here, we investigated the responses and the relative contributions of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), anaerobic ammonium oxidizing (anammox) bacteria and denitrifying bacteria after spiking urea into mangrove sediments incubated in a laboratory microcosm experiment for four weeks. During incubation, the diversity, abundances and transcription levels of the hzo genes for anammox bacteria, amoA genes for AOA and AOB, and nirS genes for denitrifying bacteria were monitored using targeted gene clone library analyses and quantitative PCR assays at the DNA and RNA levels. The results showed that mangrove sediments harbour habitat-specific anammox bacteria which related to Candidatus Scalindua and Candidatus Kuenenia clades. Mangrove specific AOA related to deep branched clades within Candidatus Nitrososphaera and Candidatus Nitrosotalea, and AOB related to Nitrosomonas and Nitrosospira were also detected in the collected sediment samples. Growth and activity of AOA were detected at all levels of amendment of nitrogen input, whereas AOB growth was detectable only at the high-level nitrogen input (1.5 mg urea per gram of dry sediment) with no amoA transcripts and lower abundance than AOA. The abundance and transcription levels of the nirS gene were higher (~1000 times) than those of the hzo gene in all groups. Pearson correlation analysis demonstrated that the abundance of both AOA and AOB amoA genes had a significant positive correlation with the nirS gene (p < 0.01). These results indicated that nitrification (primarily mediated by the AOA)-denitrification process played the most important role in nitrogen removal from the amendment of nitrogen short-term input in the mangrove sediments.