Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Food Chem X ; 20: 100900, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144760

RESUMO

Tuna cooking liquid has unpleasant aroma. In our previous studies, Cyberlindnera fabianii JGM9-1 and Lactobacillus plantarum RP26 demonstrated the ability to degrade this unpleasant aroma. However, the mechanism of microbial deodorization remains unclear. In this study, tuna cooking liquid was fermented using JGM9-1 alone, RP26 alone, and a combination of both strains. Changes in volatile aromatic compounds during fermentation were analyzed using HS-SPME-GC/MS. The unpleasant aroma of tuna cooking liquid were nine characteristic aromatic compounds associated with fishy, stinky, and greasy aromas. Furthermore, we found that the fermentation of microbes removed these unpleasant aromatic compounds and replaced them with pleasant aromatic compounds that contributed to fruity, grassy, and floral aromas. Finally, we screened 21 strong pairwise correlations between the production and consumption of characteristic volatile aromatic compounds by RP26 and JGM9-1, through HCA, VIP, OAV and Spearman's pairwise correlation analysis. These results help to clarify the metabolic mechanisms of microbial deodorization in tuna cooking liquid.

2.
Food Chem ; 405(Pt B): 134971, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36436236

RESUMO

Gracilaria lemaneiformis is a source of several bioactive natural products in China. Previously, we obtained Saccharomyces cerevisiae JJ4 and Lactobacillus paracasei paracasei RP38, that reduced the fishy odor of G. lemaneiformis. However, the associated deodorization mechanisms remain unclear. Here, G. lemaneiformis was fermented using single strain JJ4, single strain RP38, and both strains together. Dynamic changes in volatile aroma substances during fermentation were measured using HS-SPME-GC/MS. We found that the unpleasant aromas of raw G. lemaneiformis were primarily due to 3-octanone, cyclooctanol, and 1-methylcycloheptanol. Fermentation with lactic acid bacteria and yeast could reduce the substances associated with unpleasant aromas. The potentially characteristic aromatic substances consumed and produced by the different strains were determined using Opls-da and Spearman's correlations with VIP value >1 and |r| > 0.6. These results help to clarify the metabolic mechanisms by which different microbes reduce the fishy smell of G. lemaneiformis.


Assuntos
Gracilaria , Lactobacillales , Saccharomyces cerevisiae , Odorantes , Fermentação
3.
Front Microbiol ; 13: 894661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558109

RESUMO

There is a potential safety risk with ethyl carbamate (EC) in Hongqu Huangjiu production; 90% of the EC in rice wine is produced by the reaction of the urea with the alcohol of Saccharomyces cerevisiae. In our previous experiments, we screened and obtained a S. cerevisiae strain JH301 that offered low urea production. However, the key genes responsible for low urea production of strain JH301 remain unclear. Here, the whole genome sequencing of S. cerevisiae strain JH301 was accomplished via a next-generation high-throughput sequencing and long-read sequencing technology. There are six main pathways related to the urea metabolism of strain JH301 based on KEGG pathway mapping. Three species-specific genes are related to the urea metabolism pathways and were found in comparative genome analysis between strains JH301 and S288c during Hongqu Huangjiu production for the first time. Finally, the ARG80 gene was found to be likely a key gene responsible for low urea production of S. cerevisiae strain JH301, as determined by PCR and qRT-PCR check analyses from DNA and RNA levers. In conclusion, the results are useful for a scientific understanding of the mechanism of low urea production by Saccharomyces cerevisiae during Hongqu Huangjiu fermentation. It also is important to control the urea and EC contents in Hongqu Huangjiu production.

5.
Food Res Int ; 141: 110146, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33642012

RESUMO

Hong Qu glutinous rice wine (HQ wine) is a traditional alcoholic beverage produced in China by fermenting cooked rice using a fermentation starter prepared with the fungus Monascus purpureus. This starter (Hong Qu, HQ) is made empirically by open spontaneous fermentation that is hard to control and standardize, resulting in inconsistent wine quality. This study investigates representative HQ samples from a large geographic region. It explores fungal microbiome compositions, identifies characteristic differences important for the production of various HQ wine styles, and reveals the key fungi responsible for HQ wine fermentation characteristics. The source of the HQ inoculum was found to be the main factor influencing fungal community composition and diversity, followed by processing technology and geographical distribution. Linear discriminant analysis effect size (LEfSe) uncovered 14 genera as potential biomarkers to distinguish regional varieties of HQ. Significant differences were also found in fermentation characteristics such as liquefying power (LP), saccharifying power (SP), fermenting power (FP), total acid content (TA) and liquor-producing power (LPP). The key fungi responsible for LP (5 genera), SP (3 genera), FP (1 genera), LPP (4 genera), and TA (4 genera) were determined using redundancy correlation analysis. Finally, Spearman's correlation analysis indicated that LPP shows a strong positive correlation with FP and LP, while TA displays a strong negative correlation with FP. The results of this study may be utilized to prepare consistently high quality, next-generation HQ by better controlling fungal community structures, and to design fermentation processes for HQ wines with desirable oenological characteristics.


Assuntos
Micobioma , Oryza , Vinho , China , Fermentação , Vinho/análise
6.
J Sci Food Agric ; 101(1): 185-193, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32623720

RESUMO

BACKGROUND: The rapid development of the rice wine industry has increased the demand for raw materials worldwide. A fungal strain with good adaptability to rice wine brewing conditions, which can also enhance the utilization rate of raw materials (URRM), thus increasing the production efficiency, was sought in the present research. RESULTS: The strain FJMR24 was successfully isolated and screened from 35 fermentation starters and exhibited high amylase activity (2200.9 ± 18.5 U g-1 ) and high glucoamylase activity (2330.4 ± 31.9 U g-1 ). Based on a morphological examination and a sequence analysis of the internal transcribed spacer (ITS) gene and ß-tubulin gene, FJMR24 was identified as Monascus purpureus, which is an edible and versatile fungus that plays a dominant role in the processing of Hong Qu. A moderate pH of 5-6 under incubation at 35 °C for 5-6 days was favorable for the growth and enzyme production of FJMR24. The strain could also tolerate the extreme conditions of 15-45 °C, 18% ethanol (v/v), and an acidity of pH 2. The excellent fermentation adaptability of FJMR24 might enable it to retain high enzyme activity during rice wine brewing. As a result of the action of FJMR24, the URRM of the base liquor increased by around 26% due to increased starch hydrolysis efficiency, which was mainly due to the high unit enzyme activity of FJMR24. CONCLUSION: This study provides perspectives for the application of a M. purpureus strain with high starch hydrolysis activity for enhancing the URRM in traditional rice wine brewing. © 2020 Society of Chemical Industry.


Assuntos
Monascus/isolamento & purificação , Monascus/metabolismo , Oryza/microbiologia , Vinho/análise , Amilases/genética , Amilases/metabolismo , Fermentação , Microbiologia de Alimentos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Monascus/enzimologia , Monascus/genética , Oryza/metabolismo , Amido/metabolismo , Vinho/microbiologia
7.
Food Res Int ; 136: 109329, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846528

RESUMO

Hong Qu glutinous rice wine (HQGRW) is produced from glutinous rice with the addition of the traditional fermentation starter Hong Qu (mainly Gutian Hong Qu and Wuyi Hong Qu) has been added. It is unpalatable and rejected by consumers because the bitter and umami tastes are too high. The objective of this study was to compare the dynamics of the microbial communities and amino acids especially those in the different traditional fermentation starters used during HQGRW fermentation, and elucidate the key microbes responsible for amino acids. Three widely-used types of Hong Qu starters were used which can make different bitterness and umami in our previous studies, namely, black Wuyi Hong Qu (WB), red Wuyi Hong Qu (WR), and Gutian Hong Qu (GT). The living dynamics of fungal and bacterial communities during the fermentation were determined by high-throughput sequencing and rRNA gene sequencing technology for the first time. The content of amino acids in the HQGRW were determined by reverse-phase high-performance liquid chromatography analysis. The results showed that there were differences between fungal communities during the fermentation process in Wuyi Hong Qu and Gutian Hong Qu starters and between bacterial communities during the fermentation process in the three types of starters. The amino acid content of the samples showed an increasing trend in each group. The total amino acids, as well as the bitter, sweet, umami, astringent amino acids, in the GT Hong Qu group increased more slowly during fermentation, as comparerd to those in WB and WR groups. Furthermore, Meyerozyma, Saccharomyces, Bacillus, Rhizopus, Pediococcus, Monascus, and Halomonas were strongly positively correlated with the content of bitter and umami amino acids (|r| > 0.6 with FDR adjusted P < 0.05) by Spearman's correlation analysis. To conclude, these findings may contribute to a better understanding of the bitter and umami amino acid production mechanism during traditional fermentation and helpful in improving the taste of HQGRW.


Assuntos
Microbiota , Oryza , Vinho , Aminoácidos/metabolismo , Fermentação , Oryza/metabolismo , Vinho/análise
8.
PeerJ ; 8: e9083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547855

RESUMO

BACKGROUND: As the major bioactive compounds in citrus and grape, it is significant to use the contents of flavonoids and phenolic acids as quality evaluation criteria to provide a better view of classifying the quality and understanding the potential health benefits of each fruit variety. METHODS: A total of 15 varieties of citrus and 12 varieties of grapes were collected from Fujian, China. High-performance liquid chromatography method was used for the simultaneous determination of 17 phenolic compounds, including gallic acid, chlorogenic acid, caffeic acid, syringic acid, ρ-coumaric acid, ferulic acid, benzoic acid, salicylic acid, catechin, epicatechin, resveratrol, rutin, naringin, hesperidin, quercetin, nobiletin and tangeritin in the peels of citrus and grape cultivars. Further, the cultivars of citrus and grape were classified using principal component analysis (PCA) and hierarchical cluster analysis (HCA). RESULTS: A thorough separation of the 17 compounds was achieved within 100 min. The tested method exhibited good linearity (the limits of detection and limits of quantification were in the range of 0.03-1.83 µg/mL and 0.09-5.55 µg/mL, respectively), precision (the relative standard deviations of repeatability were 1.02-1.97%), and recovery (92.2-102.82%) for all the compounds, which could be used for the simultaneous determination of phenolic compounds in citrus and grape. Hesperidin (12.93-26,160.98 µg/g DW) and salicylic acid (5.35-751.02 µg/g DW) were the main flavonoids and phenolic acids in 15 citrus varieties, respectively. Besides, the hesperidin (ND to 605.48 µg/g DW) and salicylic acid (ND to 1,461.79 µg/g DW) were found as the highest flavonoid and the most abundant phenolic acid in grapes, respectively. A total of 15 citrus and 12 grape samples were classified into two main groups by PCA and HCA with strong consistency.

9.
Int J Biol Macromol ; 158: 826-836, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32387360

RESUMO

Using high pressure microfluidization, we prepared micro-fibrillated soybean cellulose (MFSC) and analyzed its morphology and structure. MFSC was then incorporated into low-methoxyl pectin (PC) to coat lactic acid bacteria (LAB) by ionotropic gelation, and the effects of PC-MFSC microgel on LAB survival in a simulated gastrointestinal tract were investigated. Particle size analysis showed that the MFSC particle size decreased significantly with increasing jet pressure. Transmission electron microscopy analysis indicated that many cellulosic microfibers appeared at 150 MPa. Infrared spectroscopy and X-ray diffraction analysis revealed that the crystal structure changed from ß-cellulose I type to II type with increasing jet pressure, but excessive pressure (200 MPa) damaged the crystalline structure of MFSC. Scanning microscopy indicated that cellulosic microfibers not only promoted a compact pectin gel morphology but also adhered to and coated the LAB in the pectin gel. MFSC-150 stabilized the pectin gel network, preventing the weakening of the gel under low pH conditions. Compared with other PC-MFSCs, PC-MFSC-150 microgel significantly decreased LAB susceptibility to gastrointestinal juice and increased the viability of LAB.

10.
Food Microbiol ; 90: 103467, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336361

RESUMO

Hong Qu glutinous rice wine (HQGRW) is typically very bitter after fermentation due to the presence of bitter amino acids (BAA). The amino acids are considered to primarily derive from the hydrolysis of protein from the raw material by microbial populations during fermentation, and temperature also has an important effect on bitter tastes. Here, the dynamics of fungal and bacterial communities during the traditional fermentation of HQGRW were investigated using high-throughput sequencing and RNA-based rRNA gene sequencing. Both principal component analysis (PCA) and hierarchical clustering analysis (HCA) revealed significant differences between the fungal and bacterial communities during fermentation at 20 °C and those performed at 25 °C and 30 °C. The growth of Saccharomyces and some LAB apparently inhibited the growth of several pernicious bacterial taxa including acetic acid bacteria. The amino acid contents of the samples all increased continuously under the different temperature conditions. Moreover, higher temperatures were associated with higher perceptual intensity of bitterness and contents of amino acids including bitter, sweet, umami, and astringent type amino acids as well as the total amino acid content during fermentation. Furthermore, the total BAA content was strongly and positively correlated with Pediococcus, Saccharomyces, Lactobacillus, Monascus, and Halomonas relative abundances, with correlations identified by |r| > 0.6 with P adjusted P < 0.05. In conclusion, these results contribute to a better understanding of the mechanisms underlying BAA production during the traditional fermentation of HQGRW and will help improve the quality and safety of these wines.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Fermentação , Microbiota , Oryza/microbiologia , Vinho/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Fungos/metabolismo , Temperatura
11.
Electron. j. biotechnol ; 43: 23-31, Jan. 2020. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1087514

RESUMO

Background: Hong Qu glutinous rice wine (HQGRW) is brewed under non-aseptic fermentation conditions, so it usually has a relatively high total acid content. The aim of this study was to investigate the dynamics of the bacterial communities and total acid during the fermentation of HQGRW and elucidate the correlation between total acid and bacterial communities. Results: The results showed that the period of rapid acid increase during fermentation occurred at the early stage of fermentation. There was a negative response between total acid increase and the rate of increase in alcohol during the early fermentation stage. Bacterial community analysis using high-throughput sequencing technology was found that the dominant bacterial communities changed during the traditional fermentation of HQGRW. Both principal component analysis (PCA) and hierarchical clustering analysis revealed that there was a great difference between the bacterial communities of Hong Qu starter and those identified during the fermentation process. Furthermore, the key bacteria likely to be associated with total acid were identified by Spearman's correlation analysis. Lactobacillus, unclassified Lactobacillaceae, and Pediococcus were found, which can make significant contributions to the total acid development (| r| N 0.6 with FDR adjusted P b 0.05), establishing that these bacteria can associate closely with the total acid of rice wine. Conclusions: This was the first study to investigate the correlation between bacterial communities and total acid during the fermentation of HQGRW. These findings may be helpful in the development of a set of fermentation techniques for controlling total acid.


Assuntos
Bactérias/isolamento & purificação , Vinho/microbiologia , Pediococcus/isolamento & purificação , Pediococcus/genética , Pediococcus/metabolismo , Fatores de Tempo , Acetobacter/isolamento & purificação , Acetobacter/genética , Acetobacter/metabolismo , Análise por Conglomerados , Análise de Sequência , Biologia Computacional , Análise de Componente Principal , Fermentação , Microbiota , Concentração de Íons de Hidrogênio , Lactobacillus/isolamento & purificação , Lactobacillus/genética , Lactobacillus/metabolismo
12.
Chin J Integr Med ; 26(6): 448-454, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31302852

RESUMO

OBJECTIVE: To reveal the effect of foods with different natures on cold or hot syndrome and gastrointestinal bacterial community structure in mice. METHODS: Forty-five 6-week-old male ICR Kunming mice of clean grade were divided into 5 groups, 9 per group, including the control (CK), hot nature herbs (HM), Hong Qu glutinous rice wine (RW), tea rice wine (TW), and cold nature herbs (CM) groups. Distilled water or corresponding herbs were administered to mice (0.01 mL/g body weight) in the 5 groups by gastric infusion respectively, once daily for 28 d. Appearance, behavior, and serum biochemical indicators, including 5-hydroxytryptamine (5-HT), thyroid stimulating hormone (TSH), noradrenaline (NE), cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), the hot nature index, as well as the gastrointestinal bacterial community structure were analyzed in all groups after treatment. RESULTS: After supplementation for 28 d, CM and TW mice showed different degrees of cold syndrome, and HM and RW mice showed different degrees of hot syndrome. Compared with the HM and RW mice, the TSH, NE, cAMP levels and hot nature indices in the CM and TW mice were significantly decreased and 5-HT and cGMP levels were significantly increased (P<0.05). There was no obvious change in appearance or behavior in CK mice. Results of clustering analysis showed that the gastrointestinal bacterial community structures were highly similar in TW and CM mice as well as in RW and HM mice, and that they were from the same branch, respectively, when the distance was 0.02. The key microbes associated with cold syndrome were Lachnospiraceae uncultured, Lactococcus, etc., and the key microbes associated with hot syndrome were S24-7 norank, Ruminococcaceae uncultured, etc. CONCLUSION: The interventions with different nature foods could change cold or hot syndrome in mice, leading to changes in gastrointestinal bacterial community structure.


Assuntos
Alimentos , Microbioma Gastrointestinal , Medicina Tradicional Chinesa/métodos , Vinho , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR
13.
Se Pu ; 32(3): 304-8, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24984473

RESUMO

An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine.


Assuntos
Ácidos/análise , Oryza , Vinho/análise , Cromatografia em Gel , Fumaratos , Malatos , Maleatos , Ácido Oxálico , Tartaratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA