Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5161, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886405

RESUMO

Top emission can enhance luminance, color purity, and panel-manufacturing compatibility for emissive displays. Still, top-emitting quantum-dot light-emitting diodes (QLEDs) suffer from poor stability, low light outcoupling, and non-negligible viewing-angle dependence because, for QLEDs with non-red emission, the electrically optimum device structure is incompatible with single-mode optical microcavity. Here, we demonstrate that by improving the way of determining reflection penetration depths and creating refractive-index-lowering processes, the issues faced by green QLEDs can be overcome. This leads to advanced device performance, including a luminance exceeding 1.6 million nits, a current efficiency of 204.2 cd A-1, and a T95 operational lifetime of 15,600 hours at 1000 nits. Meanwhile, our design does not compromise light outcoupling as it offers an external quantum efficiency of 29.2% without implementing light extraction methods. Lastly, an angular color shift of Δu'v' = 0.0052 from 0° to 60° is achieved by narrowing the emission linewidth of quantum dots.

2.
ACS Appl Mater Interfaces ; 16(17): 22055-22065, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636080

RESUMO

Nb2O5 has been viewed as a promising anode material for lithium-ion batteries by virtue of its appropriate redox potential and high theoretical capacity. However, it suffers from poor electric conductivity and low ion diffusivity. Herein, we demonstrate the controllable fabrication of Cu-doped Nb2O5 with orthorhombic (T-Nb2O5) and monoclinic (H-Nb2O5) phases through annealing the solvothermally presynthesized Nb2O5 precursor under different temperatures in air, and the Cu doping amount can be readily controlled by the concentration of the precursor solution, whose effect on the lithium storage behaviors of the Cu-doped Nb2O5 is thoroughly investigated. H-Nb2O5 shows obvious redox peaks (Nb5+/Nb4+ and Nb4+/Nb3+) with much higher capacity and better cycling stability than those for the widely investigated T-Nb2O5. When introducing appropriate Cu doping, the optimized H-Cu0.1-Nb2O5 electrode shows greatly enhanced conductivity and lower diffusion barrier as revealed by the theoretical calculations and electrochemical characterizations, delivering a high reversible capacity of 203.6 mAh g-1 and a high capacity retention of 140.8 mAh g-1 after 5000 cycles at 1 A g-1, with a high initial Coulombic efficiency of 91% and a high rate capacity of 144.2 mAh g-1 at 4 A g-1. As a demonstration for full-cell application, the H-Cu0.1-Nb2O5||LiFePO4 cell displays good cycling performance, exhibiting a reversible capacity of 135 mAh g-1 after 200 cycles at 0.2 A g-1. More importantly, this work offers a new synthesis protocol of the monoclinic Nb2O5 phase with high capacity retention and improved reaction kinetics.

3.
ACS Nano ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329720

RESUMO

Inefficient hole injection presents a major challenge in achieving stable and commercially viable solution-processed blue electroluminescent devices. Here, we conduct an in-depth study on quantum-dot light-emitting diodes (QLEDs) to understand how the energy levels of common electrodes and hole-transporting layers (HTL) affect device degradation. Our experimental findings reveal a design rule that may seem nonintuitive: combining an electrode and HTL with matched energy levels is most effective in preventing voltage rise and irreversible luminance decay, even though it causes a significant energy offset between the HTL and emissive quantum dots. Using an iterative electrostatic model, we discover that the positive outcomes, including a T95 lifetime of 109 h (luminance = 1000 nits, CIE-y = 0.087), are due to the enhanced p-type doping in the HTL rather than the assumed reduction in barrier heights. Furthermore, our modified hole injection dynamics theory, which considers distributed density-of-states, shows that the increased HTL/quantum-dot energy offset is not a primary concern because the effective barrier height is significantly lower than conventionally assumed. Following this design rule, we expect device stability to be enhanced considerably.

4.
Nano Lett ; 23(12): 5738-5745, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294577

RESUMO

The operational stability of the blue quantum dot light-emitting diode (QLED) has been one of the most important obstacles to initialize its industrialization. In this work, we demonstrate a machine learning assisted methodology to illustrate the operational stability of blue QLEDs by analyzing the measurements of over 200 samples (824 QLED devices) including current density-voltage-luminance (J-V-L), impedance spectra (IS), and operational lifetime (T95@1000 cd/m2). The methodology is able to predict the operational lifetime of the QLED with a Pearson correlation coefficient of 0.70 with a convolutional neural network (CNN) model. By applying a classification decision tree analysis of 26 extracted features of J-V-L and IS curves, we illustrate the key features in determining the operational stability. Furthermore, we simulated the device operation using an equivalent circuit model to discuss the device degradation related operational mechanisms.

5.
Angew Chem Int Ed Engl ; 62(27): e202218174, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36951117

RESUMO

Back-contact architectures offer a promising route to improve the record efficiencies of perovskite solar cells (PSCs) by eliminating parasitic light absorption. However, the performance of back-contact PSCs is limited by inadequate carrier diffusion in perovskite. Here, we report that perovskite films with a preferred out-of-plane orientation show improved carrier dynamic properties. With the addition of guanidine thiocyanate, the films exhibit carrier lifetimes and mobilities increased by 3-5 times, leading to diffusion lengths exceeding 7 µm. The enhanced carrier diffusion results from substantial suppression of nonradiative recombination and improves charge collection. Devices using such films achieve reproducible efficiencies reaching 11.2 %, among the best performances for back-contact PSCs. Our findings demonstrate the impact of carrier dynamics on back-contact PSCs and provide the basis for a new route to high-performance back-contact perovskite optoelectronic devices at low cost.

6.
Nat Commun ; 14(1): 284, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650161

RESUMO

To industrialize printed full-color displays based on quantum-dot light-emitting diodes, one must explore the degradation mechanism and improve the operational stability of blue electroluminescence. Here, we report that although state-of-the-art blue quantum dots, with monotonically-graded core/shell/shell structures, feature near-unity photoluminescence quantum efficiency and efficient charge injection, the significant surface-bulk coupling at the quantum-dot level, revealed by the abnormal dipolar excited state, magnifies the impact of surface localized charges and limits operational lifetimes. Inspired by this, we propose blue quantum dots with a large core and an intermediate shell featuring nonmonotonically-graded energy levels. This strategy significantly reduces surface-bulk coupling and tunes emission wavelength without compromising charge injection. Using these quantum dots, we fabricate bottom-emitting devices with emission colors varying from near-Rec.2020-standard blue to sky blue. At an initial luminance of 1000 cd m-2, these devices exhibit T95 operational lifetimes ranging from 75 to 227 h, significantly surpassing the existing records.

7.
ACS Nano ; 16(6): 9631-9639, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35671529

RESUMO

ZnO-based electron-transporting layers (ETLs) have been universally used in quantum-dot light-emitting diodes (QLEDs) for high performance. The active surface chemistry of ZnO nanoparticles (NPs), however, leads to QLEDs with positive aging and unacceptably poor shelf stability. SnO2 is a promising candidate for ETLs with less reactivity, but NP agglomeration in nonionic solvents makes the conventional device structure abandoned, resulting in QLEDs with extremely low operational lifetimes. The large barrier for electron injection also limits the electroluminescence efficiency. Here, we report one solution to all the above-mentioned problems. Owing to the strong HO-SnO2 coordination and the steric effect provided by the hydrocarbon groups, tetramethylammonium hydroxide can stabilize SnO2 NPs in alcohol, while its intrinsic dipole induces a favorable electronic-level shift for charge injection. The SnO2-based devices, with the conventional structure, exhibit not only the most efficient electroluminescence among ZnO-free QLEDs but also an operational lifetime (T95) over 3200 h at 1000 cd m-2, which is comparable with that of state-of-the-art ZnO-based devices. More importantly, the superior shelf stability means that the TMAH-SnO2 NPs are promising to enable QLEDs with real stability.

8.
J Phys Chem Lett ; 10(16): 4675-4682, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31328525

RESUMO

Chemical doping is a ubiquitously applied strategy to improve the charge-transfer and conductivity characteristics of spiro-OMeTAD, a hole-transporting material (HTM) used widely in solution-processed perovskite solar cells (PSCs). Cobalt(III) complexes are commonly employed HTM dopants, whose major role is to oxidize spiro-OMeTAD to provide p-doping for improved conductivity. The present work discloses additional, previously unknown important functions of cobalt complexes in the HTM films that influence the photovoltaic performance. Specifically, it is demonstrated that commercial p-dopant FK269 (bis(2,6-di(1H-pyrazol-1-yl)pyridine) cobalt(III) tris(bis(trifluoromethylsulfonyl)imide)) reduces the interfacial recombination and alleviates the decomposition of the perovskite layer under the action of tert-butylpyridine and lithium bis(trifluoromethanesulfonyl)imide. These effects are demonstrated for 1 cm2 perovskite solar cells that achieve a stabilized power conversion efficiency of 19% under 1 sun irradiation.

9.
Nat Commun ; 8(1): 613, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931833

RESUMO

Hybrid organic-inorganic halide perovskites are low-cost solution-processable solar cell materials with photovoltaic properties that rival those of crystalline silicon. The perovskite films are typically sandwiched between thin layers of hole and electron transport materials, which efficiently extract photogenerated charges. This affords high-energy conversion efficiencies but results in significant performance and fabrication challenges. Herein we present a simple charge transport layer-free perovskite solar cell, comprising only a perovskite layer with two interdigitated gold back-contacts. Charge extraction is achieved via self-assembled monolayers and their associated dipole fields at the metal-perovskite interface. Photovoltages of ~600 mV generated by self-assembled molecular monolayer modified perovskite solar cells are equivalent to the built-in potential generated by individual dipole layers. Efficient charge extraction results in photocurrents of up to 12.1 mA cm-2 under simulated sunlight, despite a large electrode spacing.Simplified device concepts may become important for the development of low cost photovoltaics. Lin et al. report solar cells based on interdigitated gold back-contacts and metal halide perovskites where charge extraction is assisted via a dipole field generated by self-assembled molecular monolayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA