Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Chem Biodivers ; 19(11): e202200117, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36165268

RESUMO

Photodynamic therapy (PDT), which uses targeted photosensitizing drugs, has been regarded as a promising method for cancer therapy. In the present study, photosensitizer red phosphorus modified P25 nanophotosensitizers (P25-RP) were generated, which were coated with platelet membrane (P25-RP@PLT) extracted from platelet rich plasma. The biocompatibility of P25-RP was demonstrated by cell counting kit-8 (CCK-8) and optical microscope assay, more than 93 % cells in the concentration of 100 µg/ml of P25-RP suspension after co-incubation for 24 h were still kept alive. The antitumor performance of P25-RP@PLT was evaluated via CCK-8 assay, flow cytometry and fluorescence staining of live/dead cells. The experiment results showed that P25-RP@PLT could ablate 55 % malignant tumor cells upon laser irradiation within 5 min, which was 10 % higher than P25-RP alone against cancer cells. Mechanistically, the cancer cell toxicity of P25-RP@PLT nanophotosensitizers was attributed to its heterojunction structure that broadens the absorption spectra, whereas PLT membrane coating technology allows for immune escape and selective adhesion capacity to cancer cells. This work provided a novel pathway on the design of novel visible-light-driven photosensitizer for cancer therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fósforo , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
3.
RSC Adv ; 10(44): 26188-26196, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519730

RESUMO

Bionic electronic skin with human sensory capabilities has attracted extensive research interest, which has been applied in the fields of medical health diagnosis, wearable electronics, human-computer interaction, and bionic prosthetics. Electronic skin tactile pressure sensing required high sensitivity, good resolution and fast response for sensing different pressure stimuli. In particular, there were still great challenges in the detection of wide pressure and the preparation of sensitive unit microstructures. Here, the direct-write printing of Weissenberg principle to fabricate GNPs/MWCNT filled conductive composite flexible pressure sensors on PDMS substrates was proposed. The effects of platform moving speed, microneedle rotation speed and the number of direct-write times on the line width of the pressure sensitive structure were investigated based on orthogonal experiments, and the optimal direct-write printing parameters were obtained. The performance of the S-shaped polyline pressure sensor was tested, in which the sensitivity could reached 0.164 kPa-1, and the response/recovery time was 100 ms and 100 ms respectively. The capture cases of objects of different quality and objects with flat/curved surfaces were successively demonstrated to exhibit its excellent sensitivity, stability and fast response performance. This work may paved the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA