Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38255212

RESUMO

The use of manufactured silica nanoparticles (SiNPs) has become widespread in everyday life, household products, and various industrial applications. While the harmful effects of crystalline silica on the lungs, known as silicosis or chronic pulmonary diseases, are well understood, the impact of SiNPs on the airway is not fully explored. This study aimed to investigate the potential effects of SiNPs on human tracheal smooth muscle cells (HTSMCs). Our findings revealed that SiNPs induced the expression of cyclooxygenase-2 (COX-2) mRNA/protein and the production of prostaglandin E2 (PGE2) without causing cytotoxicity. This induction was transcription-dependent, as confirmed by cell viability assays and COX-2 luciferase reporter assays. Further analysis, including Western blot with pharmacological inhibitors and siRNA interference, showed the involvement of receptor tyrosine kinase (RTK) EGF receptor (EGFR), non-RTK Pyk2, protein kinase Cα (PKCα), and p42/p44 MAPK in the induction process. Notably, EGFR activation initiated cellular signaling that led to NF-κB p65 phosphorylation and translocation into the cell nucleus, where it bound and stimulated COX-2 gene transcription. The resulting COX-2 protein triggered PGE2 production and secretion into the extracellular space. Our study demonstrated that SiNPs mediate COX-2 up-regulation and PGE2 secretion in HTSMCs through the sequential activation of the EGFR/Pyk2/PKCα/p42/p44MAPKs-dependent NF-κB signaling pathway. Since PGE2 can have both physiological bronchodilatory and anti-inflammatory effects, as well as pathological pro-inflammatory effects, the increased PGE2 production in the airway might act as a protective compensatory mechanism and/or a contributing factor during airway exposure to SiNPs.

2.
Biomedicines ; 11(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37893002

RESUMO

The risk of lung exposure to silica nanoparticles (SiNPs) and related lung inflammatory injury is increasing with the wide application of SiNPs in a variety of industries. A growing body of research has revealed that cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) up-regulated by SiNP toxicity has a role during pulmonary inflammation. The detailed mechanisms underlying SiNP-induced COX-2 expression and PGE2 synthesis remain unknown. The present study aims to dissect the molecular components involved in COX-2/PGE2 up-regulated by SiNPs in human pulmonary alveolar epithelial cells (HPAEpiCs) which are one of the major targets while SiNPs are inhaled. In the present study, we demonstrated that SiNPs induced COX-2 expression and PGE2 release, which were inhibited by pretreatment with a reactive oxygen species (ROS) scavenger (edaravone) or the inhibitors of proline-rich tyrosine kinase 2 (Pyk2, PF-431396), epidermal growth factor receptor (EGFR, AG1478), phosphatidylinositol 3-kinase (PI3K, LY294002), protein kinase B (Akt, Akt inhibitor VIII), p38 mitogen-activated protein kinase (MAPK) (p38 MAPK inhibitor VIII), c-Jun N-terminal kinases (JNK)1/2 (SP600125), Forkhead Box O1 (FoxO1, AS1842856), and activator protein 1 (AP-1, Tanshinone IIA). In addition, we also found that SiNPs induced ROS-dependent Pyk2, EGFR, Akt, p38 MAPK, and JNK1/2 activation in these cells. These signaling pathways induced by SiNPs could further cause c-Jun and FoxO1 activation and translocation from the cytosol to the nucleus. AP-1 and FoxO1 activation could increase COX-2 and PGE2 levels induced by SiNPs. Finally, the COX-2/PGE2 axis might promote the inflammatory responses in HPAEpiCs. In conclusion, we suggested that SiNPs induced COX-2 expression accompanied by PGE2 synthesis mediated via ROS/Pyk2/EGFR/PI3K/Akt/p38 MAPK- and JNK1/2-dependent FoxO1 and AP-1 activation in HPAEpiCs.

3.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894811

RESUMO

In this study, we confirmed that thrombin significantly increases the production of COX-2 and PGE2 in human tracheal smooth muscle cells (HTSMCs), leading to inflammation in the airways and lungs. These molecules are well-known contributors to various inflammatory diseases. Here, we investigated in detail the involved signaling pathways using specific inhibitors and small interfering RNAs (siRNAs). Our results demonstrated that inhibitors targeting proteins such as protein kinase C (PKC)δ, proline-rich tyrosine kinase 2 (Pyk2), c-Src, epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), or activator protein-1 (AP-1) effectively reduced thrombin-induced COX-2 and PGE2 production. Additionally, transfection with siRNAs against PKCδ, Pyk2, c-Src, EGFR, protein kinase B (Akt), or c-Jun mitigated these responses. Furthermore, our observations revealed that thrombin stimulated the phosphorylation of key components of the signaling cascade, including PKCδ, Pyk2, c-Src, EGFR, Akt, and c-Jun. Thrombin activated COX-2 promoter activity through AP-1 activation, a process that was disrupted by a point-mutated AP-1 site within the COX-2 promoter. Finally, resveratrol (one of the most researched natural polyphenols) was found to effectively inhibit thrombin-induced COX-2 expression and PGE2 release in HTSMCs through blocking the activation of Pyk2, c-Src, EGFR, Akt, and c-Jun. In summary, our findings demonstrate that thrombin-induced COX-2 and PGE2 generation involves a PKCδ/Pyk2/c-Src/EGFR/PI3K/Akt-dependent AP-1 activation pathway. This study also suggests the potential use of resveratrol as an intervention for managing airway inflammation.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição AP-1 , Humanos , Proteína Tirosina Quinase CSK/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinase 2 de Adesão Focal/genética , Quinase 2 de Adesão Focal/metabolismo , Inflamação/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Quinases da Família src/metabolismo , Trombina/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA