Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 255: 127947, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951422

RESUMO

Improper use of antibiotics has led to the global rise of drug-resistant biofilm bacteria. Thus, researchers have been increasingly interested in green materials that are highly biocompatible and have low toxicity. Here, nanogels (NGs) with imine bonds were synthesized by crosslinking kiwifruit-derived DNA's primary amine and aromatic aldehydes (cuminaldehyde, p-anisaldehyde, or vanillin) under water-in-hexane emulsion processes. Transmission electron microscope showed that the NGs had spherical geometry with an average particle size ranging from 40 to 140 nm and that the zeta potential indicated a negative charge. Additionally, the DNA-aromatic aldehyde NGs showed low cytotoxicity toward normal cell organoids and human RBCs in cell viability tests. These NGs were also tested against four pathogenic bacteria for various assays. DNA-vanillin (DNA-VA) NGs exhibited significant antibacterial effects against bacteria with very low inhibitory concentrations as seen in a minimum inhibitory concentration assay. Scanning electron microscope observation revealed that the bacteria were deformed, and immunoblotting detected intracellular groEL protein expression. In agreement with these results, DNA-aromatic aldehyde NGs successfully protected C. elegans from P. aeruginosa-induced lethality. These DNA NGs provided a multivalent 3D space for antibacterial aromatic aldehydes to tether, enhancing their interaction with the bacterial wall. These results offer a new direction for the development of novel antibiotics in the future.


Assuntos
Aldeídos , Caenorhabditis elegans , Humanos , Animais , Nanogéis , Aldeídos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , DNA , Testes de Sensibilidade Microbiana
2.
J Pers Med ; 11(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34834529

RESUMO

The aim of this study is to identify potential biomarkers for early diagnosis of gynecologic cancer in order to improve survival. Cervical cancer (CC) and endometrial cancer (EC) are the most common malignant tumors of gynecologic cancer among women in the world. As the underlying molecular mechanisms in both cervical and endometrial cancer remain unclear, a comprehensive and systematic bioinformatics analysis is required. In our study, gene expression profiles of GSE9750, GES7803, GES63514, GES17025, GES115810, and GES36389 downloaded from Gene Expression Omnibus (GEO) were utilized to analyze differential gene expression between cancer and normal tissues. A total of 78 differentially expressed genes (DEGs) common to CC and EC were identified to perform the functional enrichment analyses, including gene ontology and pathway analysis. KEGG pathway analysis of 78 DEGs indicated that three main types of pathway participate in the mechanism of gynecologic cancer such as drug metabolism, signal transduction, and tumorigenesis and development. Furthermore, 20 diagnostic signatures were confirmed using the least absolute shrink and selection operator (LASSO) regression with 10-fold cross validation. Finally, we used the GEPIA2 online tool to verify the expression of 20 genes selected by the LASSO regression model. Among them, the expression of PAMR1 and SLC24A3 in tumor tissues was downregulated significantly compared to the normal tissue, and found to be statistically significant in survival rates between the CC and EC of patients (p < 0.05). The two genes have their function: (1.) PAMR1 is a tumor suppressor gene, and many studies have proven that overexpression of the gene markedly suppresses cell growth, especially in breast cancer and polycystic ovary syndrome; (2.) SLC24A3 is a sodium-calcium regulator of cells, and high SLC24A3 levels are associated with poor prognosis. In our study, the gene signatures can be used to predict CC and EC prognosis, which could provide novel clinical evidence to serve as a potential biomarker for future diagnosis and treatment.

3.
Microbiol Resour Announc ; 8(44)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672739

RESUMO

Elizabethkingia sp. strain 2-6 was collected from a water faucet in the intensive care unit of a medical center in Taiwan. The complete genome sequence and annotation are reported. Analysis of the genetic relatedness to the known Elizabethkingia genomes indicated that strain 2-6 may be a new genomospecies of Elizabethkingia.

4.
Chem Sci ; 8(9): 6670-6678, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989695

RESUMO

The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target (HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells.

5.
Small ; 13(32)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28665509

RESUMO

Suspension cells can provide a source of cells for cellular reprogramming, but they are difficult to transfect by nonviral vectors. An efficient and safe nonviral vector (GO-Fe3 O4 -PEI complexes) based on iron oxide nanoparticle (Fe3 O4 )-decorated graphene oxide (GO) complexed with polyethylenimine (PEI) for the first time is developed for delivering three individual episomal plasmids (pCXLE-hOCT3/4-shp53, pCXLE-hSK, and pCXLE-hUL) encoding pluripotent-related factors of Oct3/4, shRNA against p53, Sox2, Klf4, L-Myc, and Lin28 into human peripheral blood mononuclear cells (PBMCs) simultaneously. The combined treatment of magnetic stirring and near-infrared (NIR)-laser irradiation, which can promote contact between the complexes and floating cells and increase the cell membrane permeability, respectively, is used to conduct multiple physical stimulations for suspension PBMCs transfection. The PCR analysis shows that the combinatorial effect of magnetic targeting and photothermal stimulation obviously promoted the transfection efficiency of suspension cells. The transfected cells show positive expression of the pluripotency markers, including Nanog, Oct4, and Sox2, and have potential to differentiate into mesoderm and ectoderm cells. The results demonstrate that the GO-Fe3 O4 -PEI complex provides a safe, convenient, and efficient tool for reprogramming PBMCs into partially induced pluripotent stem cells, which are able to rapidly transdifferentiate into mesodermal lineages without full reprogramming.


Assuntos
Linhagem da Célula , Reprogramação Celular , Grafite/farmacologia , Magnetismo , Mesoderma/citologia , Óxido Ferroso-Férrico/química , Humanos , Fator 4 Semelhante a Kruppel , Polietilenoimina/química
6.
Chin J Dent Res ; 20(1): 9-17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28232962

RESUMO

OBJECTIVE: To study the clinical effect of short implant placement using osteotome sinus floor elevation technique and tent-pole grafting technique with recombinant human bone morphogenetic protein 2 (rhBMP-2) in severely resorbed maxillary area. METHODS: Eleven patients with insufficient bone height in the posterior maxillary area were included. According to the native bone height and crown height space (CHS), the patients were divided into two groups: immediate placement of short implants with simultaneous bone augmentation (group A, 5 patients) and delayed dental implant placement (4 to 6 months) after bone augmentation. The rhBMP-2 was added into a deproteinised bovine bone mineral (DBBM) bone grafting material to shorten the treatment procedure and enhance the final effect of bone augmentation in both groups. Tent-pole grafting technique was applied for vertical bone augmentation in group B (6 patients). RESULTS: The success rate of the implants placed was 100% in both groups. In group A, the short implants treatment was successful, with a vertical gain of 1.5 to 6.4 mm in bone height after 4 to 6 months. In group B, the tent-pole grafting procedure in combination with DBBM and rhBMP-2 increased vertical bone height between 3.1 and 8.1 mm, an optimistic and adequate increase for implant placement. This bone increase was maintained following implant placement and final crown placement in the maxillary region (3.5 to 7.3 mm). CONCLUSION: The tent-pole grafting technique was a viable alternative choice to lateral sinus floor elevation in cases with excessive CHS. The application of rhBMP-2 with a shortened treatment time demonstrated positive outcomes in sinus floor augmentation procedures.


Assuntos
Proteína Morfogenética Óssea 2/uso terapêutico , Transplante Ósseo/métodos , Seio Maxilar/cirurgia , Levantamento do Assoalho do Seio Maxilar/métodos , Fator de Crescimento Transformador beta/uso terapêutico , Adulto , Idoso , Reabsorção Óssea , Implantação Dentária Endóssea , Implantes Dentários , Falha de Restauração Dentária , Feminino , Humanos , Arcada Edêntula/cirurgia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/uso terapêutico , Adulto Jovem
7.
Chem Asian J ; 10(8): 1618-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084245

RESUMO

A mild photocatalytic hydroperoxyarylation of styrenes has been developed, in which a novel photocatalyst, remazol brilliant blue R (RBBR), is employed at low catalytic loading (1 mol %). The operationally easy procedure uses air as the dioxygen source. Simple mono-substituted styrenes react with aryl hydrazines in moderate-to-good yields. RBBR is proposed to act as a photosensitizer for the generation of singlet oxygen.

8.
FEBS J ; 281(19): 4367-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056693

RESUMO

Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/ß-catenin/PI3K/AKT/Gsk3b axis in cancer-induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b loss of activity by LiCl treatment had serious phenotypic consequences, such as defects in the positioning and patterning of intersegmental blood vessels and reduction of vegfaa121 and vegfaa165 transcripts. In embryos treated with the phosphatidylinositol 3-kinase inhibitor, angiogenesis was severely inhibited, along with reduced Wnt, phosphorylated AKT and phosphorylated Gsk3b, suggesting that the remaining Gsk3b in somites could still degrade ß-catenin, resulting in decreased vascular endothelial growth factor Aa(VegfAa) expression. However, in gsk3b-mRNA-overexpressed embryos, intersegmental vessels ectopically sprouted by the increase in phosphorylated-Gsk3b which prevented the degradation of ß-catenin and promoted the increase in phosphorylated AKT activity, thus increasing VegfAa expression in somites. Interestingly, the Gsk3b-dependent cross-talk between PI3K/AKT and Wnt/ß-catenin suggests that Wnt/ß-catenin and PI3K/AKT interaction controls embryonic angiogenesis by a positive feedback loop rather than a hierarchical framework such as that found in cancer-induced angiogenesis. Thus, both active and inactive forms of Gsk3b mediate the cooperative signaling between Wnt/ß-catenin and PI3K/AKT to control VegfAa expression in somites during angiogenesis in zebrafish embryos.


Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , Neovascularização Fisiológica , Somitos/enzimologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Fase de Clivagem do Zigoto/enzimologia , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/enzimologia , Endotélio Vascular/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra
9.
ACS Appl Mater Interfaces ; 5(22): 12045-51, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24199674

RESUMO

A simple, novel colorimetric nanosensor for DNA methylation based on the strength of hydrophobic interaction between DNA and gold nanoparticles was proposed. The nanosensing of oligonucleotides with four nitrogen bases was first demonstrated by dividing the bases into two groups (A/T and C/G) using the representative colors that correspond to Watson-Crick base pairing. By treatment of the genomic DNA with sodium bisulfite followed by PCR amplification, the methylation level of nasopharyngeal carcinoma cells treated with 5-aza-2'-deoxycytidine for up to 5 days could be discriminated by naked eye observation. Furthermore, 12 cancer cell lines that demonstrate heterogeneity with respect to DNA methylation could also be distinguished using the nanosensor, even for amplicons as long as 342 bp. These results demonstrate that the proposed colorimetric nanosensor could potentially be useful in epigenetic studies.


Assuntos
Técnicas Biossensoriais/métodos , Metilação de DNA , DNA de Neoplasias/química , Ouro/química , Nanopartículas Metálicas/química , Calorimetria/métodos , Linhagem Celular Tumoral , DNA de Neoplasias/análise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Sulfitos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA