Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 25(7): e13494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39003585

RESUMO

Very-long-chain fatty acids (VLCFAs) regulate biophysical properties of cell membranes to determine growth and development of eukaryotes, such as the pathogenesis of the rice blast fungus Magnaporthe oryzae. The fatty acid elongase Elo1 regulates pathogenesis of M. oryzae by modulating VLCFA biosynthesis. However, it remains unknown whether and how Elo1 associates with other factors to regulate VLCFA biosynthesis in fungal pathogens. Here, we identified Ifa38, Phs1 and Tsc13 as interacting proteins of Elo1 by proximity labelling in M. oryzae. Elo1 associated with Ifa38, Phs1 and Tsc13 on the endoplasmic reticulum (ER) membrane to control VLCFA biosynthesis. Targeted gene deletion mutants Δifa38, Δphs1 and Δtsc13 were all similarly impaired as Δelo1 in vegetative growth, conidial morphology, stress responses in ER, cell wall and membrane. These deletion mutants also displayed severe damage in cell membrane integrity and failed to organize the septin ring that is essential for penetration peg formation and pathogenicity. Our study demonstrates that M. oryzae employs a fatty acid elongase complex to regulate VLCFAs for maintaining or remodelling cell membrane structure, which is important for septin-mediated host penetration.


Assuntos
Membrana Celular , Elongases de Ácidos Graxos , Proteínas Fúngicas , Oryza , Doenças das Plantas , Membrana Celular/metabolismo , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Septinas/metabolismo , Septinas/genética , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Ascomicetos/patogenicidade , Ascomicetos/genética
2.
Inorg Chem ; 63(9): 4328-4336, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38367216

RESUMO

The study of structural reconstruction is vital for the understanding of the real active sites in heterogeneous catalysis and guiding the improved catalyst design. Herein, we applied a copper nitride precatalyst in the nitroarene reductive coupling reaction and made a systematic investigation on the dynamic structural evolution behaviors and catalytic performance. This Cu3N precatalyst undergoes a rapid phase transition to nanostructured Cu with rich defective sites, which act as the actual catalytic sites for the coupling process. The nitride-derived defective Cu is very active and selective for azo formation, with 99.6% conversion of nitrobenzene and 97.1% selectivity to azobenzene obtained under mild reaction conditions. Density functional theory calculations suggest that the defective Cu sites play a role for the preferential adsorption of nitrosobenzene intermediates and significantly lowered the activation energy of the key coupling step. This work not only proposes a highly efficient noble-metal-free catalyst for nitroarenes coupling to valuable azo products but also may inspire more scientific interest in the study of the dynamic evolution of metal nitrides in different catalytic reactions.

3.
Small ; 20(23): e2311452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38145341

RESUMO

The highly selective electrochemical conversion of methanol to formate is of great significance for various clean energy devices, but understanding the structure-to-property relationship remains unclear. Here, the asymmetric charge polarized NiCo prussian blue analogue (NiCo PBA-100) is reported to exhibit remarkable catalytic performance with high current density (210 mA cm-2 @1.65 V vs RHE) and Faraday efficiency (over 90%). Meanwhile, the hybrid water splitting and Zinc-methanol-battery assembled by NiCo PBA-100 display the promoted performance with decent stability. X-ray absorption spectroscopy (XAS) and operando Raman spectroscopy indicate that the asymmetric charge polarization in NiCo PBA leads to more unoccupied states of Ni and occupied states of Co, thereby facilitating the rapid transformation of the high-active catalytic centers. Density functional theory calculations combining operando Fourier transform infrared spectroscopy demonstrate that the final reconstructed catalyst derived by NiCo PBA-100 exhibits rearranged d band properties along with a lowered energy barrier of the rate-determining step and favors the desired formate production.

4.
Fish Shellfish Immunol ; 142: 109113, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788751

RESUMO

Circular RNA (circRNA), one of the important non-coding RNA molecules with a closed-loop structure, plays a key regulatory role in cell processing. In this study, circRNAs of Epinephelus coioides, an important marine cultured fish in China, were isolated and characterized, and the network of circRNAs and mRNA was explored during Singapore grouper iridovirus (SGIV) infection, one of the most important double stranded DNA virus pathogens of marine fish. 10 g of raw data was obtained by high-throughput sequencing, and 2599 circRNAs were classified. During SGIV infection, 123 and 37 circRNAs occurred differential expression in spleen and spleen cells, indicating that circRNAs would be involved in the viral infection. GO annotation and KEGG demonstrated that circRNAs could target E. coioides genes to regulate cell activity and the activation of immune factors. The results provide some insights into the circRNAs mediated immune regulatory network during bony fish virus infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Perciformes , Ranavirus , Animais , Bass/genética , Bass/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , Singapura , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
5.
Viruses ; 15(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37766214

RESUMO

The dual-specificity phosphatase (DUSP) family plays an important role in response to adverse external factors. In this study, the DUSP5 from Epinephelus coioides, an important marine fish in Southeast Asia and China, was isolated and characterized. As expected, E. coioides DUSP5 contained four conserved domains: a rhodanese homology domain (RHOD); a dual-specificity phosphatase catalytic domain (DSPc); and two regions of low compositional complexity, indicating that E. coioides DUSP5 belongs to the DUSP family. E. coioides DUSP5 mRNA could be detected in all of the examined tissues, and was mainly distributed in the nucleus. Infection with Singapore grouper iridovirus (SGIV), one of the most important pathogens of marine fish, could inhibit the expression of E. coioides DUSP5. The overexpression of DUSP5 could significantly downregulate the expression of the key SGIV genes (MCP, ICP18, VP19, and LITAF), viral titers, the activity of NF-κB and AP-I, and the expression of pro-inflammatory factors (IL-6, IL-8, and TNF-α) of E. coioides, but could upregulate the expressions of caspase3 and p53, as well as SGIV-induced apoptosis. The results demonstrate that E. coioides DUSP5 could inhibit SGIV infection by regulating E. coioides immune-related factors, indicating that DUSP5 might be involved in viral infection.

7.
Inorg Chem ; 62(26): 10490-10496, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37340884

RESUMO

Realizing a highly efficient oxygen evolution reaction (OER) process is of great significance for hydrogen energy development. The main challenge still lies in fabricating superior electrocatalysts with favorable performance. Constructing electrocatalysts with ingenious lattice modifications is a considerable way for the rational design of highly active catalytic centers. Here, theoretical calculations predict that the lattice incorporation of Se atoms can effectively enhance the reaction activity of OER with a decreased energy barrier for the rate-determining step. To obtain the corresponding desired electrocatalyst, the optimized lattice Se-modified CoOOH, with the ideal OER performance of low overpotential and stability, was delicately designed and fabricated by the electrochemical activation of the Co0.85Se precatalyst. X-ray absorption spectroscopy (XAS) demonstrates that lattice incorporation is more likely to be generated in Co0.85Se compared to CoSe2 and CoO precatalysts, which promoted the subsequent OER process. This work clarified the correlation between the precatalyst and the lattice-modified final catalyst in connection with electrochemical reconstruction.

8.
Small ; 19(36): e2207759, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37150859

RESUMO

Homogeneous and nanometric metal clusters with unique electronic structures are promising for catalysis, however, common synthesis techniques for metal clusters suffer from large size and even metal nanocrystals attributing to their high surface energy and unsaturated configurations. Herein, a generalized rapid annealing strategy for synthesizing a series of supported metal clusters as superior catalysts is developed. Remarkably, TiO2 supported platinum nanoclusters (Pt NC/TiO2 ) exhibits the excellent catalytic activity to realize phenol hydrogenation under mild conditions. The complete phenol conversion rate and 100% selectivity toward KA oil are achieved in aqueous solution at room temperature and normal pressure. Semi-continuous scale up production of KA oil is successfully performed under mild conditions. Such excellent performance mainly originates from the partial reconstruction of Pt NC/TiO2 in aqueous phenol solution. Considering that the phenol can be produced from lignin, this study underpins a facile, sustainable, and economical route to synthesize nylon from biomass.

9.
Small ; 19(38): e2303142, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37211687

RESUMO

Nickel (Ni) based materials with non-metal heteroatom doping are competitive substitutes for platinum group catalyst toward alkaline hydrogen oxidation reaction (HOR). However, the incorporation of non-metal atom into the lattice of conventional fcc phase Ni can easily trigger a structural phase transformation, forming hcp phase nonmetallic intermetallic compounds. Such tangle phenomenon makes it difficult to uncover the relationship between HOR catalytic activity and doping effect on fcc phase Ni. Herein, taking trace carbon doped Ni (C-Ni) nanoparticles as an example, a new nonmetal doped Ni nanoparticles synthesized by a simple fast decarbonization route using Ni3 C as precursor is presented, which provides an ideal platform to study the structure-activity relationship between alkaline HOR performance and non-metal doping effect toward fcc phase Ni. The obtained C-Ni exhibits an enhanced alkaline HOR catalytic activity compared with pure Ni, approaching to commercial Pt/C. X-ray absorption spectroscopy confirms that the trace carbon doping can modulate the electronic structure of conventional fcc phase nickel. Besides, theoretical calculations suggest that the introducing of C atoms can effectively regulate the d-band center of Ni atoms, resulting in the optimized hydrogen absorption, thereby improving the HOR activity.

11.
Adv Mater ; 35(30): e2302467, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37074628

RESUMO

Metal phthalocyanine (MPc) material with a well-defined MN4 moiety offers a platform for catalyzing the oxygen reduction reaction (ORR), while the practical performance is often limited by the insufficient O2 adsorption due to the planar MN4 configuration. Here, a design (called Gr-MG -O-MP Pc) is proposed, where the metal of MPc (MP ) is axially coordinated to a single metal atom in graphene (Gr-MG ) through a bridge-bonded oxygen atom (O), introducing effective out-of-plane polarization to promote O2 adsorption on MPc. Manipulating the out-of-plane polarization charge by varying types of MP and MG (MP  = Fe/Co/Ni, MG  = Ti/V/Cr/Mn/Fe/Co/Ni) in the axial coordination zone of -MG -O-MP - are examined by density functional theory simulations. Among them, the catalyst of Gr-V-O-FePc stands out with the highest calculated O2 adsorption energy, which is synthesized successfully and verified by systemic X-ray absorption spectroscopy measurements. Importantly, it delivers a remarkable ORR performance with half-wave potential of 0.925 V (versus reversible hydrogen electrode) and kinetic current density of 26.7 mA cm-2 . This thus demonstrates a new and simple way to pursue high catalytic performance by inducing out-of-plane polarization in catalysts.

12.
Inorg Chem ; 62(12): 5032-5039, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36919994

RESUMO

Developing efficient atomic-scale metal-supported catalysts is of great significance for energy conversion technologies. However, the precise modulation of electron transfer between the metal and supporter in atomic-scale metal-supported catalysts to further improve the catalytic activity is still a major challenge. Herein, we show tunable electron transfer between atomic-scale Pt and tungsten nitride/oxide supports (namely, Pt/WN and Pt/W18O49). Pt/WN with modest electron exchange and Pt/W18O49 with aggressive electron exchange exhibit notably different catalytic activities for the alkaline hydrogen oxidation reaction (HOR), in which Pt/WN shows a 5.7-fold enhancement in HOR intrinsic catalytic performance in comparison to Pt/W18O49. Additionally, the tunable electronic transfer at the interface of Pt/WN and Pt/W18O49, as proven by the theoretical calculation, resulted in the discrepancy of the adsorption free energy of the reaction intermediates, as well as catalytic activity, for the HOR process. Our work provides new insights into the design of advanced atomic-scale metal-supported catalysts for electrocatalysis.

13.
Nanoscale ; 14(23): 8255-8259, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35642926

RESUMO

Molecular Fe phthalocyanine (FePc) is successfully anchored on a defective mesoporous carbon framework for the highly efficient oxygen reduction reaction (ORR) with a half-wave potential of 0.86 V (vs. RHE) and a limited current density of 5.40 mA cm-2. DFT calculations further suggest that the non-planar structure incorporating FePc can promote charge polarization and decrease the energy barrier.

14.
Chem Commun (Camb) ; 58(17): 2914-2917, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35138308

RESUMO

High curvature carbon-supported isolated NiN4 sites with ideal CO2 reduction reaction performance were obtained through a top-down strategy. The charge polarization induced by the axial asymmetry of the carbon substrate can enhance the adsorption of COOH* and reduce the free energy barrier of the rate-determining step.

15.
J Am Chem Soc ; 143(29): 11262-11270, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34281338

RESUMO

Lattice engineering on specific facets of metal catalysts is critically important not only for the enhancement of their catalytic performance but also for deeply understanding the effect of facet-based lattice engineering on catalytic reactions. Here, we develop a facile two-step method for the lattice expansion on specific facets, i.e., Pt(100) and Pt(111), of Pt catalysts. We first prepare the Pd@Pt core-shell nanoparticles exposed with the Pt(100) and Pt(111) facets, respectively, via the Pd-seeded epitaxial growth, and then convert the Pd core to PdH0.43 by hydrogen intercalation. The lattice expansion of the Pd core induces the lattice enlargement of the Pt shell, which can significantly promote the alcohol oxidation reaction (AOR) on both Pt(100) and Pt(111) facets. Impressively, Pt mass specific activities of 32.51 A mgPt-1 for methanol oxidation and 14.86 A mgPt-1 for ethanol oxidation, which are 41.15 and 25.19 times those of the commercial Pt/C catalyst, respectively, have been achieved on the Pt(111) facet. Density functional theory (DFT) calculations indicate that the remarkably improved catalytic performance on both the Pt(100) and the Pt(111) facets through lattice expansion arises from the enhanced OH adsorption. This work not only paves the way for lattice engineering on specific facets of nanomaterials to enhance their electrocatalytic activity but also offers a promising strategy toward the rational design and preparation of highly efficient catalysts.

16.
Adv Mater ; 33(27): e2101015, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057261

RESUMO

Due to their ultrathin layered structure and rich elemental variety, MXenes are emerging as a promising electrode candidate in energy generation and storage. MXenes are generally synthesized via hazardous fluoride-containing reagents from robust MAX materials, unfortunately resulting in plenty of inert fluoride functional groups on the surface that noticeably decline their performance. Density functional theory calculations are used to show the etching feasibility of hydrochloric acid (HCl) on various MAX phases. Based on this theoretical guidance, fluoride-free Mo2 C MXenes with high efficiency about 98% are experimentally demonstrated. The Mo2 C electrodes produced by this process exhibit high electrochemical performance in supercapacitors and sodium-ion batteries owing to the chosen surface functional groups created via the HCl etch process. This strategy enables the development of fluoride-free MXenes and opens a new window to explore their potential in energy-storage applications.

17.
Angew Chem Int Ed Engl ; 60(29): 16085-16092, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33963658

RESUMO

To avoid the energy-consuming step of direct N≡N bond cleavage, photocatalytic N2 fixation undergoing the associative pathways has been developed for mild-condition operation. However, it is a fundamental yet challenging task to gain comprehensive understanding on how the associative pathways (i.e., alternating vs. distal) are influenced and altered by the fine structure of catalysts, which eventually holds the key to significantly promote the practical implementation. Herein, we introduce Fe dopants into TiO2 nanofibers to stabilize oxygen vacancies and simultaneously tune their local electronic structure. The combination of in situ characterizations with first-principles simulations reveals that the modulation of local electronic structure by Fe dopants turns the hydrogenation of N2 from associative alternating pathway to associative distal pathway. This work provides fresh hints for rationally controlling the reaction pathways toward efficient photocatalytic nitrogen fixation.

18.
Adv Mater ; 32(50): e2004059, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174328

RESUMO

The practical utilization of plasmon-based technology relies on the ability to find high-performance plasmonic materials other than noble metals. A key scientific challenge is to significantly increase the intrinsically low concentration of free carriers in metal-oxide materials. Here, a novel electron-proton co-doping strategy is developed to achieve uniform hydrogen doping in metal-oxide MoO3 at mild conditions, which creates a metal-like ultrahigh free-carrier concentration approaching that of noble metals (1021 cm-3 in H1.68 MoO3 versus 1022 cm-3 in Au/Ag). This bestows giant and tunable plasmonic resonances in the visible region to this originally semiconductive material. Using ultrafast spectroscopy characterizations and first-principle simulations, the formation of a quasi-metallic energy band structure that leads to long-lived and strong plasmonic field is revealed. As verified by the surface-enhanced Raman spectra (SERS) of rhodamine 6G molecules on Hx MoO3 , the SERS enhancement factor reaches as high as 1.1 × 107 with a detection limit at concentration as low as 1 × 10-9  mol L-1 , representing the best among the hitherto reported non-metal systems. The findings not only provide a set of metal-like semiconductor materials with merits of low cost, tunable electronic structure, and plasmonic resonance, but also a general strategy to induce tunable ultrahigh free-carrier concentration in non-metal systems.

19.
J Phys Chem Lett ; 11(20): 8483-8489, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966089

RESUMO

The interaction between photogenerated carriers with lattice vibrations plays a fundamental role in the nonradiative recombination and charge-transfer processes occurring in photocatalysis and photovoltaics. Here, we employ Raman spectroscopy to investigate the electron-phonon interaction in ternary layered Cu2MoS4 nanoflakes. Multiphonon Raman scattering with up to fourth-order longitudinal optical (LO) overtones is observed under above-band gap excitation, indicating a strong electron-phonon coupling (EPC) that could be described by the cascade model. The Huang-Rhys factor was derived to characterize the strength of EPC and was found to be increasing with decreasing temperature. First-principles calculations of lattice dynamics and electron-phonon matrix elements suggest that the strong EPC in Cu2MoS4 is dominated by Fröhlich coupling between electron and the electric fields, which is induced by the localized phonon mode originating from a flat phonon branch. Our findings facilitate the understanding of electron-phonon interaction in 2D ternary Cu2MoS4 and pave the way for developing and optimizing optoelectronic devices.

20.
Adv Mater ; 32(30): e2001167, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32567078

RESUMO

Lack of effective strategies to regulate the internal activity of MoS2 limits its practical application for hydrogen evolution reactions (HERs). Doping of heteroatoms without forming aggregation or an edge enrichment is still challenging, and its effect on the HER needs to be further explored. Herein, a two-step method is developed to obtain multi-metal-doped H-MoS2 , which includes intercalation of the layered MoO3 precursor with a following sulfurization. Benefiting from the capability of the intercalation method to uniformly and simultaneously introduce different elements into the van der Waals gap, this method is universal to obtain multi-heteroatoms co-doped MoS2 without forming clusters, phase separation, and an edge enrichment. It is demonstrated that the doping of adjacent cobalt and palladium monomers on MoS2 greatly enhances the HER catalytic activity. The overpotential at 10 mA cm-2 and Tafel slope of Co and Pd co-doped MoS2 is found to be 49.3 mV and 43.2 mV dec-1 , respectively, representing a superior acidic HER catalytic activity. This intercalation-assisted method also provides a new and general strategy to synthesize uniformly doped transition metal dichalcogenides for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA