Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 452: 131287, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003005

RESUMO

Methomyl is a widely used carbamate pesticide, which has adverse biological effects and poses a serious threat to ecological environments and human health. Several bacterial isolates have been investigated for removing methomyl from environment. However, low degradation efficiency and poor environmental adaptability of pure cultures severely limits their potential for bioremediation of methomyl-contaminated environment. Here, a novel microbial consortium, MF0904, can degrade 100% of 25 mg/L methomyl within 96 h, an efficiency higher than that of any other consortia or pure microbes reported so far. The sequencing analysis revealed that Pandoraea, Stenotrophomonas and Paracoccus were the predominant members of MF0904 in the degradation process, suggesting that these genera might play pivotal roles in methomyl biodegradation. Moreover, five new metabolites including ethanamine, 1,2-dimethyldisulfane, 2-hydroxyacetonitrile, N-hydroxyacetamide, and acetaldehyde were identified using gas chromatography-mass spectrometry, indicating that methomyl could be degraded firstly by hydrolysis of its ester bond, followed by cleavage of the C-S ring and subsequent metabolism. Furthermore, MF0904 can successfully colonize and substantially enhance methomyl degradation in different soils, with complete degradation of 25 mg/L methomyl within 96 and 72 h in sterile and nonsterile soil, respectively. Together, the discovery of microbial consortium MF0904 fills a gap in the synergistic metabolism of methomyl at the community level and provides a potential candidate for bioremediation applications.


Assuntos
Metomil , Praguicidas , Humanos , Metomil/química , Metomil/metabolismo , Biodegradação Ambiental , Praguicidas/metabolismo , Bactérias , Solo , Redes e Vias Metabólicas , Consórcios Microbianos
2.
J Agric Food Chem ; 71(13): 5261-5274, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36962004

RESUMO

The acephate-degrading microbes that are currently available are not optimal. In this study, Burkholderia sp. A11, an efficient degrader of acephate, presented an acephate-removal efficiency of 83.36% within 56 h (100 mg·L-1). The A11 strain has a broad substrate tolerance and presents a good removal effect in the concentration range 10-1600 mg·L-1. Six metabolites from the degradation of acephate were identified, among which the main products were methamidophos, acetamide, acetic acid, methanethiol, and dimethyl disulfide. The main degradation pathways involved include amide bond breaking and phosphate bond hydrolysis. Moreover, strain A11 successfully colonized and substantially accelerated acephate degradation in different soils, degrading over 90% of acephate (50-200 mg·kg-1) within 120 h. 16S rDNA sequencing results further confirmed that the strain A11 gradually occupied a dominant position in the soil microbial communities, causing slight changes in the diversity and composition of the indigenous soil microbial community structure.


Assuntos
Burkholderia , Inseticidas , Compostos Organotiofosforados , Biodegradação Ambiental , Inseticidas/química , Compostos Organofosforados , Compostos Organotiofosforados/química , Fosforamidas , Solo , Burkholderia/metabolismo
3.
Front Microbiol ; 13: 713375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422769

RESUMO

As members of the organochlorine group of insecticides, aldrin and dieldrin are effective at protecting agriculture from insect pests. However, because of excessive use and a long half-life, they have contributed to the major pollution of the water/soil environments. Aldrin and dieldrin have been reported to be highly toxic to humans and other non-target organisms, and so their use has gradually been banned worldwide. Various methods have been tried to remove them from the environment, including xenon lamps, combustion, ion conversion, and microbial degradation. Microbial degradation is considered the most promising treatment method because of its advantages of economy, environmental protection, and convenience. To date, a few aldrin/dieldrin-degrading microorganisms have been isolated and identified, including Pseudomonas fluorescens, Trichoderma viride, Pleurotus ostreatus, Mucor racemosus, Burkholderia sp., Cupriavidus sp., Pseudonocardia sp., and a community of anaerobic microorganisms. Many aldrin/dieldrin resistance genes have been identified from insects and microorganisms, such as Rdl, bph, HCo-LGC-38, S2-RDLA302S , CSRDL1A, CSRDL2S, HaRdl-1, and HaRdl-2. Aldrin degradation includes three pathways: the oxidation pathway, the reduction pathway, and the hydroxylation pathway, with dieldrin as a major metabolite. Degradation of dieldrin includes four pathways: oxidation, reduction, hydroxylation, and hydrolysis, with 9-hydroxydieldrin and dihydroxydieldrin as major products. Many studies have investigated the toxicity and degradation of aldrin/dieldrin. However, few reviews have focused on the microbial degradation and biochemical mechanisms of aldrin/dieldrin. In this review paper, the microbial degradation and degradation mechanisms of aldrin/dieldrin are summarized in order to provide a theoretical and practical basis for the bioremediation of aldrin/dieldrin-polluted environment.

4.
J Hazard Mater ; 426: 127841, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34844804

RESUMO

The microbial degradation of acephate in pure cultures has been thoroughly explored, but synergistic metabolism at the community level has rarely been investigated. Here, we report a novel microbial consortium, ZQ01, capable of effectively degrading acephate and its toxic product methamidophos, which can use acephate as a source of carbon, phosphorus and nitrogen. The degradation conditions with consortium ZQ01 were optimized using response surface methodology at a temperature of 34.1 °C, a pH of 8.9, and an inoculum size of 2.4 × 108 CFU·mL-1, with 89.5% of 200 mg L-1 acephate degradation observed within 32 h. According to the main products methamidophos, acetamide and acetic acid, a novel degradation pathway for acephate was proposed to include hydrolysis and oxidation as the main pathways of acephate degradation. Moreover, the bioaugmentation of acephate-contaminated soils with consortium ZQ01 significantly enhanced the removal rate of acephate. The results of the present work demonstrate the potential of microbial consortium ZQ01 to degrade acephate in water and soil environments, with a different and complementary acephate degradation pathway.


Assuntos
Consórcios Microbianos , Fosforamidas , Biodegradação Ambiental , Compostos Organotiofosforados , Solo , Microbiologia do Solo
5.
Front Microbiol ; 12: 717286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790174

RESUMO

Diazinon is an organophosphorus pesticide widely used to control cabbage insects, cotton aphids and underground pests. The continuous application of diazinon in agricultural activities has caused both ecological risk and biological hazards in the environment. Diazinon can be degraded via physical and chemical methods such as photocatalysis, adsorption and advanced oxidation. The microbial degradation of diazinon is found to be more effective than physicochemical methods for its complete clean-up from contaminated soil and water environments. The microbial strains belonging to Ochrobactrum sp., Stenotrophomonas sp., Lactobacillus brevis, Serratia marcescens, Aspergillus niger, Rhodotorula glutinis, and Rhodotorula rubra were found to be very promising for the ecofriendly removal of diazinon. The degradation pathways of diazinon and the fate of several metabolites were investigated. In addition, a variety of diazinon-degrading enzymes, such as hydrolase, acid phosphatase, laccase, cytochrome P450, and flavin monooxygenase were also discovered to play a crucial role in the biodegradation of diazinon. However, many unanswered questions still exist regarding the environmental fate and degradation mechanisms of this pesticide. The catalytic mechanisms responsible for enzymatic degradation remain unexplained, and ecotechnological techniques need to be applied to gain a comprehensive understanding of these issues. Hence, this review article provides in-depth information about the impact and toxicity of diazinon in living systems and discusses the developed ecotechnological remedial methods used for the effective biodegradation of diazinon in a contaminated environment.

6.
Front Microbiol ; 12: 686509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475856

RESUMO

Diuron (DUR) is a phenylurea herbicide widely used for the effective control of most annual and perennial weeds in farming areas. The extensive use of DUR has led to its widespread presence in soil, sediment, and aquatic environments, which poses a threat to non-target crops, animals, humans, and ecosystems. Therefore, the removal of DUR from contaminated environments has been a hot topic for researchers in recent decades. Bioremediation seldom leaves harmful intermediate metabolites and is emerging as the most effective and eco-friendly strategy for removing DUR from the environment. Microorganisms, such as bacteria, fungi, and actinomycetes, can use DUR as their sole source of carbon. Some of them have been isolated, including organisms from the bacterial genera Arthrobacter, Bacillus, Vagococcus, Burkholderia, Micrococcus, Stenotrophomonas, and Pseudomonas and fungal genera Aspergillus, Pycnoporus, Pluteus, Trametes, Neurospora, Cunninghamella, and Mortierella. A number of studies have investigated the toxicity and fate of DUR, its degradation pathways and metabolites, and DUR-degrading hydrolases and related genes. However, few reviews have focused on the microbial degradation and biochemical mechanisms of DUR. The common microbial degradation pathway for DUR is via transformation to 3,4-dichloroaniline, which is then metabolized through two different metabolic pathways: dehalogenation and hydroxylation, the products of which are further degraded via cooperative metabolism. Microbial degradation hydrolases, including PuhA, PuhB, LibA, HylA, Phh, Mhh, and LahB, provide new knowledge about the underlying pathways governing DUR metabolism. The present review summarizes the state-of-the-art knowledge regarding (1) the environmental occurrence and toxicity of DUR, (2) newly isolated and identified DUR-degrading microbes and their enzymes/genes, and (3) the bioremediation of DUR in soil and water environments. This review further updates the recent knowledge on bioremediation strategies with a focus on the metabolic pathways and molecular mechanisms involved in the bioremediation of DUR.

7.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502147

RESUMO

Tetramethrin is a pyrethroid insecticide that is commonly used worldwide. The toxicity of this insecticide into the living system is an important concern. In this study, a novel tetramethrin-degrading bacterial strain named A16 was isolated from the activated sludge and identified as Gordonia cholesterolivorans. Strain A16 exhibited superior tetramethrin degradation activity, and utilized tetramethrin as the sole carbon source for growth in a mineral salt medium (MSM). High-performance liquid chromatography (HPLC) analysis revealed that the A16 strain was able to completely degrade 25 mg·L-1 of tetramethrin after 9 days of incubation. Strain A16 effectively degraded tetramethrin at temperature 20-40 °C, pH 5-9, and initial tetramethrin 25-800 mg·L-1. The maximum specific degradation rate (qmax), half-saturation constant (Ks), and inhibition constant (Ki) were determined to be 0.4561 day-1, 7.3 mg·L-1, and 75.2 mg·L-1, respectively. The Box-Behnken design was used to optimize degradation conditions, and maximum degradation was observed at pH 8.5 and a temperature of 38 °C. Five intermediate metabolites were identified after analyzing the degradation products through gas chromatography-mass spectrometry (GC-MS), which suggested that tetramethrin could be degraded first by cleavage of its carboxylester bond, followed by degradation of the five-carbon ring and its subsequent metabolism. This is the first report of a metabolic pathway of tetramethrin in a microorganism. Furthermore, bioaugmentation of tetramethrin-contaminated soils (50 mg·kg-1) with strain A16 (1.0 × 107 cells g-1 of soil) significantly accelerated the degradation rate of tetramethrin, and 74.1% and 82.9% of tetramethrin was removed from sterile and non-sterile soils within 11 days, respectively. The strain A16 was also capable of efficiently degrading a broad spectrum of synthetic pyrethroids including D-cyphenothrin, chlorempenthrin, prallethrin, and allethrin, with a degradation efficiency of 68.3%, 60.7%, 91.6%, and 94.7%, respectively, after being cultured under the same conditions for 11 days. The results of the present study confirmed the bioremediation potential of strain A16 from a contaminated environment.


Assuntos
Actinobacteria/metabolismo , Inseticidas/metabolismo , Piretrinas/metabolismo , Poluentes do Solo/metabolismo , Actinobacteria/crescimento & desenvolvimento , Biotransformação , Microbiologia Industrial/métodos
8.
Appl Microbiol Biotechnol ; 105(20): 7695-7708, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586458

RESUMO

Fipronil is a broad-spectrum phenyl-pyrazole insecticide that is widely used in agriculture. However, in the environment, its residues are toxic to aquatic animals, crustaceans, bees, termites, rabbits, lizards, and humans, and it has been classified as a C carcinogen. Due to its residual environmental hazards, various effective approaches, such as adsorption, ozone oxidation, catalyst coupling, inorganic plasma degradation, and microbial degradation, have been developed. Biodegradation is deemed to be the most effective and environmentally friendly method, and several pure cultures of bacteria and fungi capable of degrading fipronil have been isolated and identified, including Streptomyces rochei, Paracoccus sp., Bacillus firmus, Bacillus thuringiensis, Bacillus spp., Stenotrophomonas acidaminiphila, and Aspergillus glaucus. The metabolic reactions of fipronil degradation appear to be the same in different bacteria and are mainly oxidation, reduction, photolysis, and hydrolysis. However, the enzymes and genes responsible for the degradation are somewhat different. The ligninolytic enzyme MnP, the cytochrome P450 enzyme, and esterase play key roles in different strains of bacteria and fungal. Many unanswered questions exist regarding the environmental fate and degradation mechanisms of this pesticide. The genes and enzymes responsible for biodegradation remain largely unexplained, and biomolecular techniques need to be applied in order to gain a comprehensive understanding of these issues. In this review, we summarize the literature on the degradation of fipronil, focusing on biodegradation pathways and identifying the main knowledge gaps that currently exist in order to inform future research. KEY POINTS: • Biodegradation is a powerful tool for the removal of fipronil. • Oxidation, reduction, photolysis, and hydrolysis play key roles in the degradation of fipronil. • Possible biochemical pathways of fipronil in the environment are described.


Assuntos
Inseticidas , Poluentes do Solo , Streptomyces , Animais , Aspergillus , Biodegradação Ambiental , Pirazóis/análise , Coelhos , Poluentes do Solo/análise , Stenotrophomonas
9.
J Hazard Mater ; 418: 126253, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119972

RESUMO

Heavy metal toxicity has become a pressing ecological problem that affects the ecosystems through bioaccumulation, representing a serious public health hazard. Many conventional strategies have been developed and applied to decontaminate and restore metal-contaminated areas. However, these conventional approaches are not very suitable and environmentally safe for heavy metal remediation because of their high operational costs, high energy requirements, post-waste disposal problems, and secondary pollutant generation. Thus, biosurfactant-based bioremediation of heavy metals is a sustainable and promising approach because of its biodegradation capability, economic effectiveness, and ecofriendly nature. Pseudomonas sp., Bacillus sp., Citrobacter freundii, and Candida tropicalis have been isolated as potential sources of biosurfactants and produce compounds such as surfactin, rhamnolipids, and sophorolipids. Owing to the severity of heavy metal pollution in certain parts of the environment, biosurfactants have garnered great interest and attention as an emerging multi-functional technology of the new century for successful removal of heavy metal pollutants. The present study describes the role of biosurfactants in the bioremediation of heavy metals from contaminated environments. Moreover, the interaction mechanism underlying biosurfactant-metal complexation and metal remediation are discussed. Based on the review of the literature, further research is warranted to elucidate the mechanistic roles and explore the structural characterization and gene regulation of biosurfactants to improve their productivity and expand their applicability in bioremediation.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Tensoativos
10.
Appl Microbiol Biotechnol ; 105(11): 4369-4381, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34021814

RESUMO

The herbicide butachlor has been used in huge quantities worldwide, affecting various environmental systems. Butachlor residues have been detected in soil, water, and organisms, and have been shown to be toxic to these non-target organisms. This paper briefly summarizes the toxic effects of butachlor on aquatic and terrestrial animals, including humans, and proposes the necessity of its removal from the environment. Due to long-term exposure, some animals, plants, and microorganisms have developed resistance toward butachlor, indicating that the toxicity of this herbicide can be reduced. Furthermore, we can consider removing butachlor residues from the environment by using such butachlor-resistant organisms. In particular, microbial degradation methods have attracted much attention, with about 30 kinds of butachlor-degrading microorganisms have been found, such as Fusarium solani, Novosphingobium chloroacetimidivorans, Chaetomium globosum, Pseudomonas putida, Sphingomonas chloroacetimidivorans, and Rhodococcus sp. The metabolites and degradation pathways of butachlor have been investigated. In addition, enzymes associated with butachlor degradation have been identified, including CndC1 (ferredoxin), Red1 (reductase), FdX1 (ferredoxin), FdX2 (ferredoxin), Dbo (debutoxylase), and catechol 1,2 dioxygenase. However, few reviews have focused on the microbial degradation and molecular mechanisms of butachlor. This review explores the biochemical pathways and molecular mechanisms of butachlor biodegradation in depth in order to provide new ideas for repairing butachlor-contaminated environments. KEY POINTS: • Biodegradation is a powerful tool for the removal of butachlor. • Dechlorination plays a key role in the degradation of butachlor. • Possible biochemical pathways of butachlor in the environment are described.


Assuntos
Herbicidas , Acetanilidas , Biodegradação Ambiental , Chaetomium , Fusarium , Herbicidas/toxicidade , Humanos , Redes e Vias Metabólicas , Sphingomonadaceae , Sphingomonas
11.
Chemosphere ; 279: 130500, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33892453

RESUMO

Carbamate compounds are commonly applied in agricultural sectors as alternative options to the recalcitrant organochlorine pesticides due to their easier breakdown and less persistent nature. However, the large-scale use of carbamates also leads to toxic environmental residues, causing severe toxicity in various living systems. The toxic effects of carbamates are due to their inhibitor activity against the acetylchlolinesterase enzyme. This enzyme is crucial for neurotransmission signaling in living beings. Hence, from the environmental point of view, the elimination of carbamates is a worldwide concern and priority. Microbial technology can be deliberated as a potential tool that can work efficiently and as an ecofriendly option for the dissipation of carbamate insecticides from contaminated environments by improving biodegradation processes via metabolic activities of microorganisms. A variety of bacterial and fungal species have been isolated and characterized and are capable of degrading a broad range of carbamates in soil and water environments. In addition, microbial carbamate hydrolase genes (mcd, cehA, cahA, cfdJ, and mcbA) were strongly implicated in the evolution of new metabolic functions and carbamate hydrolase enzymes. However, the accurate localization and appropriate functions of carbamate hydrolase enzymes/genes are very limited. To explore the information on the degradation routes of carbamates and promote the application of biodegradation, a study of molecular techniques is required to unlock insights regarding the degradation specific genes and enzymes. Hence, this review discusses the deep understanding of carbamate degradation mechanisms with microbial strains, metabolic pathways, molecular mechanisms, and their genetic basis in degradation.


Assuntos
Inseticidas , Praguicidas , Bactérias/genética , Biodegradação Ambiental , Carbamatos
12.
Front Bioeng Biotechnol ; 9: 632059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644024

RESUMO

Global environmental contamination with a complex mixture of xenobiotics has become a major environmental issue worldwide. Many xenobiotic compounds severely impact the environment due to their high toxicity, prolonged persistence, and limited biodegradability. Microbial-assisted degradation of xenobiotic compounds is considered to be the most effective and beneficial approach. Microorganisms have remarkable catabolic potential, with genes, enzymes, and degradation pathways implicated in the process of biodegradation. A number of microbes, including Alcaligenes, Cellulosimicrobium, Microbacterium, Micrococcus, Methanospirillum, Aeromonas, Sphingobium, Flavobacterium, Rhodococcus, Aspergillus, Penecillium, Trichoderma, Streptomyces, Rhodotorula, Candida, and Aureobasidium, have been isolated and characterized, and have shown exceptional biodegradation potential for a variety of xenobiotic contaminants from soil/water environments. Microorganisms potentially utilize xenobiotic contaminants as carbon or nitrogen sources to sustain their growth and metabolic activities. Diverse microbial populations survive in harsh contaminated environments, exhibiting a significant biodegradation potential to degrade and transform pollutants. However, the study of such microbial populations requires a more advanced and multifaceted approach. Currently, multiple advanced approaches, including metagenomics, proteomics, transcriptomics, and metabolomics, are successfully employed for the characterization of pollutant-degrading microorganisms, their metabolic machinery, novel proteins, and catabolic genes involved in the degradation process. These technologies are highly sophisticated, and efficient for obtaining information about the genetic diversity and community structures of microorganisms. Advanced molecular technologies used for the characterization of complex microbial communities give an in-depth understanding of their structural and functional aspects, and help to resolve issues related to the biodegradation potential of microorganisms. This review article discusses the biodegradation potential of microorganisms and provides insights into recent advances and omics approaches employed for the specific characterization of xenobiotic-degrading microorganisms from contaminated environments.

13.
Environ Pollut ; 272: 115908, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190976

RESUMO

Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C-F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.


Assuntos
Fluorocarbonos , Alcanossulfonatos , Bioacumulação , Biotransformação , Monitoramento Ambiental , Fluorocarbonos/análise , Esgotos
14.
Front Microbiol ; 11: 2045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013750

RESUMO

Acephate is an organophosphate pesticide that has been widely used to control insect pests in agricultural fields for decades. However, its use has been partially restricted in many countries due to its toxic intermediate product methamidophos. Long term exposure to acephate and methamidophos in non-target organisms results in severe poisonous effects, which has raised public concern and demand for the removal of these pollutants from the environment. In this paper, the toxicological effects of acephate and/or methamidophos on aquatic and land animals, including humans are reviewed, as these effects promote the necessity of removing acephate from the environment. Physicochemical degradation mechanisms of acephate and/or methamidophos are explored and explained, such as photo-Fenton, ultraviolet/titanium dioxide (UV/TiO2) photocatalysis, and ultrasonic ozonation. Compared with physicochemical methods, the microbial degradation of acephate and methamidophos is emerging as an eco-friendly method that can be used for large-scale treatment. In recent years, microorganisms capable of degrading methamidophos or acephate have been isolated, including Hyphomicrobium sp., Penicillium oxalicum, Luteibacter jiangsuensis, Pseudomonas aeruginosa, and Bacillus subtilis. Enzymes related to acephate and/or methamidophos biodegradation include phosphotriesterase, paraoxonase 1, and carboxylesterase. Furthermore, several genes encoding organophosphorus degrading enzymes have been identified, such as opd, mpd, and ophc2. However, few reviews have focused on the biochemical pathways and molecular mechanisms of acephate and methamidophos. In this review, the mechanisms and degradation pathways of acephate and methamidophos are summarized in order to provide a new way of thinking for the study of the degradation of acephate and methamidophos.

15.
Toxics ; 8(3)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882955

RESUMO

Imidacloprid is a neonicotinoid insecticide that has been widely used to control insect pests in agricultural fields for decades. It shows insecticidal activity mainly by blocking the normal conduction of the central nervous system in insects. However, in recent years, imidacloprid has been reported to be an emerging contaminant in all parts of the world, and has different toxic effects on a variety of non-target organisms, including human beings, due to its large-scale use. Hence, the removal of imidacloprid from the ecosystem has received widespread attention. Different remediation approaches have been studied to eliminate imidacloprid residues from the environment, such as oxidation, hydrolysis, adsorption, ultrasound, illumination, and biodegradation. In nature, microbial degradation is one of the most important processes controlling the fate of and transformation from imidacloprid use, and from an environmental point of view, it is the most promising means, as it is the most effective, least hazardous, and most environmentally friendly. To date, several imidacloprid-degrading microbes, including Bacillus, Pseudoxanthomonas, Mycobacterium, Rhizobium, Rhodococcus, and Stenotrophomonas, have been characterized for biodegradation. In addition, previous studies have found that many insects and microorganisms have developed resistance genes to and degradation enzymes of imidacloprid. Furthermore, the metabolites and degradation pathways of imidacloprid have been reported. However, reviews of the toxicity and degradation mechanisms of imidacloprid are rare. In this review, the toxicity and degradation mechanisms of imidacloprid are summarized in order to provide a theoretical and practical basis for the remediation of imidacloprid-contaminated environments.

16.
Front Microbiol ; 11: 868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508767

RESUMO

Neonicotinoids are derivatives of synthetic nicotinoids with better insecticidal capabilities, including imidacloprid, nitenpyram, acetamiprid, thiacloprid, thiamethoxam, clothianidin, and dinotefuran. These are mainly used to control harmful insects and pests to protect crops. Their main targets are nicotinic acetylcholine receptors. In the past two decades, the environmental residues of neonicotinoids have enormously increased due to large-scale applications. More and more neonicotinoids remain in the environment and pose severe toxicity to humans and animals. An increase in toxicological and hazardous pollution due to the introduction of neonicotinoids into the environment causes problems; thus, the systematic remediation of neonicotinoids is essential and in demand. Various technologies have been developed to remove insecticidal residues from soil and water environments. Compared with non-bioremediation methods, bioremediation is a cost-effective and eco-friendly approach for the treatment of pesticide-polluted environments. Certain neonicotinoid-degrading microorganisms, including Bacillus, Mycobacterium, Pseudoxanthomonas, Rhizobium, Rhodococcus, Actinomycetes, and Stenotrophomonas, have been isolated and characterized. These microbes can degrade neonicotinoids under laboratory and field conditions. The microbial degradation pathways of neonicotinoids and the fate of several metabolites have been investigated in the literature. In addition, the neonicotinoid-degrading enzymes and the correlated genes in organisms have been explored. However, few reviews have focused on the neonicotinoid-degrading microorganisms along with metabolic pathways and degradation mechanisms. Therefore, this review aimed to summarize the microbial degradation and biochemical mechanisms of neonicotinoids. The potentials of neonicotinoid-degrading microbes for the bioremediation of contaminated sites were also discussed.

17.
Chemosphere ; 259: 127419, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593003

RESUMO

Carbofuran is one of the most toxic broad-spectrum and systemic N-methyl carbamate pesticide, which is extensively applied as insecticide, nematicide and acaricide for agricultural, domestic and industrial purposes. It is extremely lethal to mammals, birds, fish and wildlife due to its anticholinesterase activity, which inhibits acetyl-cholinesterase and butyrylcholinesterse activity. In humans, carbofuran is associated with endocrine disrupting activity, reproductive disorders, cytotoxic and genotoxic abnormalities. Therefore, cleanup of carbofuran-contaminated environments is of utmost concern and urgently needs an adequate, advanced and effective remedial technology. Microbial technology (bacterial, fugal and algal species) is a very potent, pragmatic and ecofriendly approach for the removal of carbofuran. Microbial enzymes and their catabolic genes exhibit an exceptional potential for bioremediation strategies. To understand the specific mechanism of carbofuran degradation and involvement of carbofuran hydrolase enzymes and genes, highly efficient genomic approaches are required to provide reliable information and unfold metabolic pathways. This review briefly discusses the carbofuran toxicity and its toxicological impact into the environment, in-depth understanding of carbofuran degradation mechanism with microbial strains, metabolic pathways, molecular mechanisms and genetic basis involved in degradation.


Assuntos
Biodegradação Ambiental , Carbofurano/toxicidade , Inibidores da Colinesterase/toxicidade , Poluentes Ambientais/toxicidade , Acetilcolinesterase/metabolismo , Animais , Carbamatos , Carbofurano/metabolismo , Inibidores da Colinesterase/metabolismo , Poluentes Ambientais/metabolismo , Humanos , Hidrolases , Inseticidas/metabolismo , Inseticidas/toxicidade , Redes e Vias Metabólicas
18.
Microorganisms ; 8(5)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357564

RESUMO

Azoxystrobin is one of the most popular strobilurin fungicides, widely used in agricultural fields for decades.Extensive use of azoxystrobin poses a major threat to ecosystems. However, little is known about the kinetics and mechanism of azoxystrobin biodegradation. The present study reports a newly isolated bacterial strain, Ochrobactrum anthropi SH14, utilizing azoxystrobin as a sole carbon source, was isolated from contaminated soils. Strain SH14 degraded 86.3% of azoxystrobin (50 µg·mL-1) in a mineral salt medium within five days. Maximum specific degradation rate (qmax), half-saturation constant (Ks), and inhibition constant (Ki) were noted as 0.6122 d-1, 6.8291 µg·mL-1, and 188.4680 µg·mL-1, respectively.Conditions for strain SH14 based azoxystrobin degradation were optimized by response surface methodology. Optimum degradation was determined to be 30.2 °C, pH 7.9, and 1.1 × 107 CFU·mL-1 of inoculum. Strain SH14 degraded azoxystrobin via a novel metabolic pathway with the formation of N-(4,6-dimethoxypyrimidin-2-yl)-acetamide,2-amino-4-(4-chlorophenyl)-3-cyano-5,6-dimethyl-pyridine, and 3-quinolinecarboxylic acid,6,8-difluoro-4-hydroxy-ethyl ester as the main intermediate products, which were further transformed without any persistent accumulative product. This is the first report of azoxystrobin degradation pathway in a microorganism. Strain SH14 also degraded other strobilurin fungicides, including kresoxim-methyl (89.4%), pyraclostrobin (88.5%), trifloxystrobin (78.7%), picoxystrobin (76.6%), and fluoxastrobin (57.2%) by following first-order kinetic model. Bioaugmentation of azoxystrobin-contaminated soils with strain SH14 remarkably enhanced the degradation of azoxystrobin, and its half-life was substantially reduced by 95.7 and 65.6 days in sterile and non-sterile soils, respectively, in comparison with the controls without strain SH14. The study presents O. anthropi SH14 for enhanced biodegradation of azoxystrobin and elaborates on the metabolic pathways to eliminate its residual toxicity from the environment.

19.
Front Microbiol ; 11: 522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292398

RESUMO

Lindane (γ-hexachlorocyclohexane) is an organochlorine pesticide that has been widely used in agriculture over the last seven decades. The increasing residues of lindane in soil and water environments are toxic to humans and other organisms. Large-scale applications and residual toxicity in the environment require urgent lindane removal. Microbes, particularly Gram-negative bacteria, can transform lindane into non-toxic and environmentally safe metabolites. Aerobic and anaerobic microorganisms follow different metabolic pathways to degrade lindane. A variety of enzymes participate in lindane degradation pathways, including dehydrochlorinase (LinA), dehalogenase (LinB), dehydrogenase (LinC), and reductive dechlorinase (LinD). However, a limited number of reviews have been published regarding the biodegradation and bioremediation of lindane. This review summarizes the current knowledge regarding lindane-degrading microbes along with biodegradation mechanisms, metabolic pathways, and the microbial remediation of lindane-contaminated environments. The prospects of novel bioremediation technologies to provide insight between laboratory cultures and large-scale applications are also discussed. This review provides a theoretical foundation and practical basis to use lindane-degrading microorganisms for bioremediation.

20.
Microorganisms ; 8(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325934

RESUMO

Continuous use of allethrin has resulted in heavy environmental contamination and has raised public concern about its impact on human health, yet little is known about the kinetics and microbial degradation of this pesticide. This study reported the degradation kinetics in a novel fungal strain, Fusarium proliferatum CF2, isolated from contaminated agricultural fields. Strain CF2 utilized 50 mg·L-1 of allethrin as the sole carbon source for growth in minimal salt medium and tolerated high concentrations of allethrin of up to 1000 mg·L-1. The optimum degradation conditions for strain CF2 were determined to be a temperature of 26 °C and pH 6.0 using response surface methodology. Under optimum conditions, strain CF2 completely degraded allethrin within 144 hours. The degradation kinetics of allethrin followed first order reaction kinetics. Kinetics analysis showed that its half-life was substantially reduced by 507.1 hours, as compared to the uninoculated control. This study provides new insights into the microbial degradation of allethrin with fungal F. proliferatum CF2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA