Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(18)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35120334

RESUMO

The laminated ternary boride Mo5SiB2of T2 structure have two symmetrically inequivalent metallic sites, 16l and 4c, being occupied in a 4:1 ratio. The phase was recently shown to be stable for 80% substitution of Mo for Ti, at the majority site, forming an out-of-plane chemically ordered quaternary boride: Ti4MoSiB2. Considering that the hypothetical Ti5SiB2is theoretically predicted as not stable, a key difference in bonding characteristics is indicated for full substitution of Mo for Ti at the metallic sites. To explore the origin of formation of Ti4MoSiB2, we here investigate the electronic properties and bonding characteristics of Mo5SiB2, Ti4MoSiB2and Ti5SiB2through their density of states, projected crystal orbital Hamilton population (pCOHP), Bader charge partitioning and second order force constants. The bond between the two different metallic sites is found to be key to the stability of the compounds, evident from the pCOHP of this bond showing a peak of bonding states close to the Fermi level, which is completely filled in Mo5SiB2and Ti4MoSiB2, while only partially filled in Ti5SiB2. Furthermore, the lower electronegativity of Ti compared to Mo results in charge accumulation at the Si and B sites, which coincides with a reduced bond strength in Ti5SiB2compared to Mo5SiB2and Ti4MoSiB2. Bandstructure calculations show that all three structures are metallic. The calculated mechanical and elastic properties show reduced bulk (B) and elastic (E) moduli when introducing Ti in Mo5SiB2, from 279 and 365 GPa to 176 and 258 GPa, respectively. The Pugh criteria indicates also a slight reduction in ductility, with aG/Bratio increasing from 0.51 to 0.59.

2.
J Phys Condens Matter ; 33(25)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33878752

RESUMO

We have by means of first principles density functional theory calculations studied the mechanical and electronic properties of the so calledi-MAB phases,M4/3'M″2/3AlB2, whereM' = Cr, Mo, W andM″ = Sc, Y. These phases, experimentally verified for Mo4/3Sc2/3AlB2and Mo4/3Y2/3AlB2, display an atomically laminated structure with in-plane chemical order between theM' andM″ elements. Structural properties, along with elastic constants and moduli, are predicted for different structural symmetries, including the reportedR3̄m(#166) space group. We find all consideredi-MAB phases to be metallic with a significant peak in the electronic structure at the Fermi level and no significant anisotropy in the electronic band structure. The simulations also indicate that they are rather hard and stiff, in particular the Cr-based ones, with a Young's modulusEof 325 GPa forM″ = Sc. The Mo-based phases are similar, withE= 299 GPa forM″ = Sc, which is higher than the corresponding laminated carbides (i-MAX phases).

3.
Adv Mater ; 31(2): e1805472, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30393920

RESUMO

Global warming caused by burning of fossil fuels is indisputably one of mankind's greatest challenges in the 21st century. To reduce the ever-increasing CO2 emissions released into the atmosphere, dry solid adsorbents with large surface-to-volume ratio such as carbonaceous materials, zeolites, and metal-organic frameworks have emerged as promising material candidates for capturing CO2 . However, challenges remain because of limited CO2 /N2 selectivity and long-term stability. The effective adsorption of CO2 gas (≈12 mol kg-1 ) on individual sheets of 2D transition metal carbides (referred to as MXenes) is reported here. It is shown that exposure to N2 gas results in no adsorption, consistent with first-principles calculations. The adsorption efficiency combined with the CO2 /N2 selectivity, together with a chemical and thermal stability, identifies the archetype Ti3 C2 MXene as a new material for carbon capture (CC) applications.

4.
Accid Anal Prev ; 72: 391-400, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25129446

RESUMO

There is currently scant research on the role of transport priorities, risk perception and worry for travel mode use and preferences. The present study aims to examine these factors in relation to mode use and preferences among Norwegian commuters. A web-based survey was conducted in a randomly obtained representative sample of daily commuters in the extended greater Oslo area (n=690). The results showed that those who prioritized efficiency and flexibility tended to commute by car, while those who prioritized safety and comfort used public (e.g. metro, tram, and train) or active (e.g. walking and cycling) transport. In a free choice scenario, the respondents who prioritized flexibility reported a preference for using a car, whereas those who prioritized safety and comfort preferred public and active transport for their commuter travels. Risk perception of high impact events, such as terrorism and major accidents, as well as risk perception related to personal impact risks (theft, violence etc.) were related to car use on commuter travels. Transport-related worry exerted weak influences on mode use and preferences. Increased speed on rail transport and more frequent departures may be effective in reducing car use on commuter travels. Risk communication should focus on highlighting the low risk of experiencing security and safety issues in the public transport sector, and this message should be complemented by efforts to reduce the probability of negative events affecting public transport.


Assuntos
Ansiedade , Atitude , Comportamento do Consumidor , Risco , Meios de Transporte , Adolescente , Adulto , Idoso , Automóveis , Ciclismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Veículos Automotores , Noruega , Percepção , Ferrovias , Segurança , Inquéritos e Questionários , Caminhada , Adulto Jovem
5.
ScientificWorldJournal ; 2013: 709423, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250274

RESUMO

The aim of this paper is to argue for a number of statements about what is important for a client to do in order to improve quality in new infrastructure projects, with a focus on procurement and organizational issues. The paper synthesizes theoretical and empirical results concerning organizational performance, especially the role of the client for the quality of a project. The theoretical framework used is contract theory and transaction cost theory, where assumptions about rationality and self-interest are made and where incentive problems, asymmetric information, and moral hazard are central concepts. It is argued that choice of procurement type will not be a crucial factor. There is no procurement method that guarantees a better quality than another. We argue that given the right conditions all procurement methods can give good results, and given the wrong conditions, all of them can lead to low quality. What is crucial is how the client organization manages knowledge and the incentives for the members of the organization. This can be summarized as "organizational culture." One way to improve knowledge and create incentives is to use independent second opinions in a systematic way.


Assuntos
Arquitetura/normas , Comportamento do Consumidor , Serviços Contratados/normas , Contratos/normas , Arquitetura de Instituições de Saúde/normas , Controle de Qualidade , Meios de Transporte/normas , Indústria da Construção , Suécia
6.
Materials (Basel) ; 4(9): 1599-1618, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28824159

RESUMO

We review results of recent combined theoretical and experimental studies of Ti1-xAlxN, an archetypical alloy system material for hard-coating applications. Theoretical simulations of lattice parameters, mixing enthalpies, and elastic properties are presented. Calculated phase diagrams at ambient pressure, as well as at pressure of 10 GPa, show a wide miscibility gap and broad region of compositions and temperatures where the spinodal decomposition takes place. The strong dependence of the elastic properties and sound wave anisotropy on the Al-content offers detailed understanding of the spinodal decomposition and age hardening in Ti1-xAlxN alloy films and multilayers. TiAlN/TiN multilayers can further improve the hardness and thermal stability compared to TiAlN since they offer means to influence the kinetics of the favorable spinodal decomposition and suppress the detrimental transformation to w-AlN. Here, we show that a 100 degree improvement in terms of w-AlN suppression can be achieved, which is of importance when the coating is used as a protective coating on metal cutting inserts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA