Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2309161121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170748

RESUMO

In neuronal cell types, vesicular exocytosis is governed by the SNARE (soluble NSF attachment receptor) complex consisting of synaptobrevin2, SNAP25, and syntaxin1. These proteins are required for vesicle priming and fusion. We generated an improved SNAP25-based SNARE COmplex Reporter (SCORE2) incorporating mCeruelan3 and Venus and overexpressed it in SNAP25 knockout embryonic mouse chromaffin cells. This construct rescues vesicle fusion with properties indistinguishable from fusion in wild-type cells. Combining electrochemical imaging of individual release events using electrochemical detector arrays with total internal reflection fluorescence resonance energy transfer (TIR-FRET) imaging reveals a rapid FRET increase preceding individual fusion events by 65 ms. The experiments are performed under conditions of a steady-state cycle of docking, priming, and fusion, and the delay suggests that the FRET change reflects tight docking and priming of the vesicle, followed by fusion after ~65 ms. Given the absence of wt SNAP25, SCORE2 allows determination of the number of molecules at fusion sites and the number that changes conformation. The number of SNAP25 molecules changing conformation in the priming step increases with vesicle size and SNAP25 density in the plasma membrane and equals the number of copies present in the vesicle-plasma membrane contact zone. We estimate that in wt cells, 6 to 7 copies of SNAP25 change conformation during the priming step.


Assuntos
Células Cromafins , Proteínas SNARE , Animais , Camundongos , Membrana Celular/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
2.
Methods Mol Biol ; 2565: 239-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36205899

RESUMO

Both patch amperometry (PA) and intracellular patch electrochemistry (IPE) take advantage of a recording configuration where an electrochemical detector-carbon fiber electrode (CFE)-is housed inside a patch pipette. PA, which is employed in cell-attached or excised inside-out patch clamp configuration, offers high-resolution patch capacitance measurements with simultaneous amperometric detection of catecholamines released during exocytosis. The method provides precise information on single-vesicle size and quantal content, fusion pore conductance, and permeability of the pore for catecholamines. IPE, on the other hand, measures cytosolic catecholamines that diffuse into the patch pipette following membrane rupture to achieve the whole-cell configuration. In amperometric mode, IPE detects total catechols, whereas in cyclic voltammetric mode, it provides more specific information on the nature of the detected molecules and may selectively quantify catecholamines, providing a direct approach to determine cytosolic concentrations of catecholaminergic transmitters and their metabolites. Here, we provide detailed instructions on setting up PA and IPE, performing experiments and analyzing the data.


Assuntos
Células Cromafins , Fibra de Carbono , Catecolaminas/metabolismo , Catecóis , Células Cromafins/metabolismo , Eletroquímica/métodos , Exocitose
3.
Cell Rep ; 36(8): 109580, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433034

RESUMO

Many neurotransmitters are organic ions that carry a net charge, and their release from secretory vesicles is therefore an electrodiffusion process. The selectivity of early exocytotic fusion pores is investigated by combining electrodiffusion theory, measurements of amperometric foot signals from chromaffin cells with anion substitution, and molecular dynamics simulation. The results reveal that very narrow fusion pores are cation selective, but more dilated fusion pores become anion permeable. The transition occurs around a fusion pore conductance of ∼300 pS. The cation selectivity of a narrow fusion pore accelerates the release of positively charged transmitters such as dopamine, noradrenaline, adrenaline, serotonin, and acetylcholine, while glutamate release may require a more dilated fusion pore.


Assuntos
Células Cromafins/metabolismo , Potenciais da Membrana , Neurotransmissores/metabolismo , Vesículas Secretórias/metabolismo , Animais , Bovinos
4.
Anal Chem ; 93(22): 8027-8034, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038637

RESUMO

Complementary metal-oxide-semiconductor (CMOS) microelectrode arrays integrate amplifier arrays with on-chip electrodes, offering high-throughput platforms for electrochemical sensing with high spatial and temporal resolution. Such devices have been developed for highly parallel constant voltage amperometric detection of transmitter release from multiple cells with single-vesicle resolution. Cyclic voltammetry (CV) is an electrochemical method that applies voltage waveforms, which provides additional information about electrode properties and about the nature of analytes. A 16-channel, 64-electrode-per-channel CMOS integrated circuit (IC) fabricated in a 0.5 µm CMOS process for CV is demonstrated. Each detector consists of only 11 transistors and an integration capacitor with a unit dimension of 0.0015 mm2. The device was postfabricated using Pt as the working electrode material with a shifted electrode design, which makes it possible to redefine the size and the location of working electrodes. The system incorporating cell-sized (8 µm radius) microelectrodes was validated with dopamine injection tests and CV measurements of potassium ferricyanide at a 1 V/s scanning rate. The cyclic voltammograms were in excellent agreement with theoretical predictions. The technology enables rigorous characterization of electrode performance for the application of CMOS microelectrode arrays in low-noise amperometric measurements of quantal transmitter release as well as other biosensing applications.


Assuntos
Técnicas Eletroquímicas , Semicondutores , Dopamina , Microeletrodos , Óxidos
6.
J Neurochem ; 151(1): 38-49, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31274190

RESUMO

Neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, are considered incurable and significantly reduce the quality of life of the patients. A variety of drugs that modulate neurotransmitter levels have been used for the treatment of the neurodegenerative diseases but with limited efficacy. In this work, an amperometric complementary metal-oxide-semiconductor (CMOS) chip is used for high-throughput drug testing with respect to the modulation of transmitter release from single vesicles using chromaffin cells prepared from bovine adrenal glands as a model system. Single chromaffin cell amperometry was performed with high efficiency on the surface-modified CMOS chip and follow-up whole-cell patch-clamp experiments were performed to determine the readily releasable pool sizes. We show that the antidepressant drug bupropion significantly increases the amount of neurotransmitter released in individual quantal release events. The antidepressant drug citalopram accelerates rapid neurotransmitter release following stimulation and follow-up patch-clamp experiments reveal that this is because of the increase in the pool of readily releasable vesicles. These results shed light on the mechanisms by which bupropion and citalopram may be potentially effective in the treatment of neurodegenerative diseases. These results demonstrate that the CMOS amperometry chip technology is an excellent tool for drug testing to determine the specific mechanisms by which they modulate neurotransmitter release.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Células Cromafins/efeitos dos fármacos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Neurotransmissores/metabolismo , Animais , Bupropiona/farmacologia , Bovinos , Células Cultivadas , Citalopram/farmacologia , Semicondutores
7.
Biophys J ; 116(9): 1732-1747, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31027888

RESUMO

Fluorescence imaging is often used to monitor dynamic cellular functions under conditions of very low light intensities to avoid photodamage to the cell and rapid photobleaching. Determination of the time of a fluorescence change relative to a rapid high time-resolution event, such as an action potential or pulse stimulation, is challenged by the low photon rate and the need to use imaging frame durations that limit the time resolution. To overcome these limitations, we developed a time superresolution method named event correlation microscopy that aligns repetitive events with respect to the high time-resolution events. We describe the algorithm of the method, its step response function, and a theoretical, computational, and experimental analysis of its precision, providing guidelines for camera exposure time settings depending on imaging signal properties and camera parameters for optimal time resolution. We also demonstrate the utility of the method to recover rapid nonstepwise kinetics by deconvolution fits. The event correlation microscopy method provides time superresolution beyond the photon rate limit and imaging frame duration with well-defined precision.


Assuntos
Imagem Óptica/métodos , Algoritmos , Simulação por Computador , Corantes Fluorescentes/química , Luz , Microscopia de Fluorescência/instrumentação , Fotodegradação , Fótons
8.
Proc Natl Acad Sci U S A ; 115(50): 12751-12756, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30482862

RESUMO

Release of neurotransmitters from synaptic vesicles begins with a narrow fusion pore, the structure of which remains unresolved. To obtain a structural model of the fusion pore, we performed coarse-grained molecular dynamics simulations of fusion between a nanodisc and a planar bilayer bridged by four partially unzipped SNARE complexes. The simulations revealed that zipping of SNARE complexes pulls the polar C-terminal residues of the synaptobrevin 2 and syntaxin 1A transmembrane domains to form a hydrophilic core between the two distal leaflets, inducing fusion pore formation. The estimated conductances of these fusion pores are in good agreement with experimental values. Two SNARE protein mutants inhibiting fusion experimentally produced no fusion pore formation. In simulations in which the nanodisc was replaced by a 40-nm vesicle, an extended hemifusion diaphragm formed but a fusion pore did not, indicating that restricted SNARE mobility is required for rapid fusion pore formation. Accordingly, rapid fusion pore formation also occurred in the 40-nm vesicle system when SNARE mobility was restricted by external forces. Removal of the restriction is required for fusion pore expansion.


Assuntos
Fusão de Membrana/fisiologia , Neurônios/metabolismo , Proteínas SNARE/metabolismo , Citoplasma/metabolismo , Diafragma/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Modelos Estruturais , Proteínas Mutantes/metabolismo , Neurotransmissores/metabolismo , Domínios Proteicos , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
9.
IEEE Trans Biomed Circuits Syst ; 12(6): 1345-1355, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30059319

RESUMO

Human neuroblastoma cells, SH-SY5Y, are often used as a neuronal model to study Parkinson's disease and dopamine release in the substantia nigra, a midbrain region that plays an important role in motor control. Using amperometric single-cell recordings of single vesicle release events, we can study molecular manipulations of dopamine release and gain a better understanding of the mechanisms of neurological diseases. However, single-cell analysis of neurotransmitter release using traditional techniques yields results with very low throughput. In this paper, we will discuss a monolithically-integrated CMOS sensor array that has the low-noise performance, fine temporal resolution, and 1024 parallel channels to observe dopamine release from many single cells with single-vesicle resolution. The measured noise levels of our transimpedance amplifier are 415, 622, and 1083 [Formula: see text], at sampling rates of 10, 20, and 30 kS/s, respectively, without additional filtering. Post-CMOS processing is used to monolithically integrate 1024 on-chip gold electrodes, with an individual electrode size of 15 µm × 15 µm, directly on 1024 transimpedance amplifiers in the CMOS device. SU-8 traps are fabricated on individual electrodes to allow single cells to be interrogated and to reject multicellular clumps. Dopamine secretions from 76 cells are simultaneously recorded by loading the CMOS device with SH-SY5Y cells. In the 42-s measurement, a total of 7147 single vesicle release events are monitored. The study shows the CMOS device's capability of recording vesicle secretion at a single-cell level, with 1024 parallel channels, to provide detailed information on the dynamics of dopamine release at a single-vesicle resolution.


Assuntos
Engenharia Biomédica/instrumentação , Vesículas Citoplasmáticas/metabolismo , Neuroblastoma/metabolismo , Análise de Célula Única/instrumentação , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Dopamina/metabolismo , Eletrodos , Desenho de Equipamento , Humanos
10.
IEEE Trans Biomed Circuits Syst ; 12(4): 894-903, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29994774

RESUMO

A potentiostat circuit for the application of bipolar electrode voltages and detection of bidirectional currents using a microelectrode array is presented. The potentiostat operates as a regulated-cascode amplifier for positive input currents, and as an active-input regulated-cascode mirror for negative input currents. This topology enables constant-potential amperometry and fast-scan cyclic voltammetry (FSCV) at microelectrode arrays for parallel recording of quantal release events, electrode impedance characterization, and high-throughput drug screening. A 64-channel FSCV detector array, fabricated in a 0.5-$\mu$m, 5-V CMOS process, is also demonstrated. Each detector occupies an area of 45  $\mu$m $\times$ 30 $\mu$m and consists of only 14 transistors and a 50-fF integrating capacitor. The system was validated using prerecorded input stimuli from actual FSCV measurements at a carbon-fiber microelectrode.


Assuntos
Técnicas Eletroquímicas/métodos , Microeletrodos , Animais , Técnicas Biossensoriais/métodos , Membrana Celular/metabolismo , Exocitose/fisiologia , Humanos , Neurônios/metabolismo , Ruído
11.
FEBS Lett ; 592(21): 3542-3562, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29904915

RESUMO

Neurotransmitter release occurs in the form of quantal events by fusion of secretory vesicles with the plasma membrane, and begins with the formation of a fusion pore that has a conductance similar to that of a large ion channel or gap junction. In this review, we propose mechanisms of fusion pore formation and discuss their implications for fusion pore structure and function. Accumulating evidence indicates a direct role of soluble N-ethylmaleimide-sensitive-factor attachment receptor proteins in the opening of fusion pores. Fusion pores are likely neither protein channels nor purely lipid, but are of proteolipidic composition. Future perspectives to gain better insight into the molecular structure of fusion pores are discussed.


Assuntos
Membrana Celular/metabolismo , Exocitose , Fusão de Membrana , Vesículas Secretórias/metabolismo , Animais , Humanos , Proteolipídeos/metabolismo , Proteínas SNARE/metabolismo
12.
Pflugers Arch ; 470(1): 113-123, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28889250

RESUMO

Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.


Assuntos
Células Cromafins/fisiologia , Técnicas Eletroquímicas/métodos , Procedimentos Analíticos em Microchip/métodos , Animais , Técnicas Eletroquímicas/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Dispositivos Lab-On-A-Chip
13.
J Am Chem Soc ; 139(51): 18440-18443, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29231734

RESUMO

The t-SNARE complex plays a central role in neuronal fusion. Its components, syntaxin-1 and SNAP25, are largely present in individual clusters and partially colocalize at the presumptive fusion site. How these protein clusters modify local lipid composition and membrane morphology is largely unknown. In this work, using coarse-grained molecular dynamics, the transmembrane domains (TMDs) of t-SNARE complexes are shown to form aggregates leading to formation of lipid nanodomains, which are enriched in cholesterol, phosphatidylinositol 4,5-bisphosphate, and gangliosidic lipids. These nano-domains induce membrane curvature that would promote a closer contact between vesicle and plasma membrane.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animais , Colesterol/metabolismo , Gangliosídeos/metabolismo , Fusão de Membrana , Simulação de Dinâmica Molecular , Células PC12 , Fosfatidilinositol 4,5-Difosfato/metabolismo , Domínios Proteicos , Ratos , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo
14.
PLoS One ; 12(3): e0173993, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28323853

RESUMO

Although several proteins have been implicated in secretory vesicle tethering, the identity and mechanical properties of the components forming the physical vesicle-plasma membrane link remain unknown. Here we present the first experimental measurements of nanomechanical properties of secretory vesicle-plasma membrane tethers using combined AFM force clamp and TIRF microscopy on membrane sheets from PC12 cells expressing the vesicle marker ANF-eGFP. Application of pulling forces generated tether extensions composed of multiple steps with variable length. The frequency of short (<10 nm) tether extension events was markedly higher when a fluorescent vesicle was present at the cantilever tip and increased in the presence of GTPγS, indicating that these events reflect specifically the properties of vesicle-plasma membrane tethers. The magnitude of the short tether extension events is consistent with extension lengths expected from progressive unfolding of individual helices of the exocyst complex, supporting its direct role in forming the physical vesicle-plasma membrane link.


Assuntos
Fator Natriurético Atrial/metabolismo , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Microscopia de Força Atômica/métodos , Microscopia de Interferência/métodos , Vesículas Secretórias/metabolismo , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fenômenos Mecânicos , Células PC12 , Ratos
15.
Elife ; 52016 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-27343350

RESUMO

Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.


Assuntos
Exocitose , Fusão de Membrana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Vesículas Secretórias/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Células Cultivadas , Análise Mutacional de DNA , Camundongos , Modelos Biológicos , Proteínas Mutantes/química , Conformação Proteica , Proteína 2 Associada à Membrana da Vesícula/química
16.
J Endocrinol ; 229(3): 287-94, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068696

RESUMO

Prostaglandins inhibit insulin secretion in a manner similar to that of norepinephrine (NE) and somatostatin. As NE inhibits endocytosis as well as exocytosis, we have now examined the modulation of endocytosis by prostaglandin E1 (PGE1). Endocytosis following exocytosis was recorded by whole-cell patch clamp capacitance measurements in INS-832/13 cells. Prolonged depolarizing pulses producing a high level of Ca(2+) influx were used to stimulate maximal exocytosis and to deplete the readily releasable pool (RRP) of granules. This high Ca(2+) influx eliminates the inhibitory effect of PGE1 on exocytosis and allows specific characterization of the inhibitory effect of PGE1 on the subsequent compensatory endocytosis. After stimulating exocytosis, endocytosis was apparent under control conditions but was inhibited by PGE1 in a Pertussis toxin-sensitive (PTX)-insensitive manner. Dialyzing a synthetic peptide mimicking the C-terminus of the α-subunit of the heterotrimeric G-protein Gz into the cells blocked the inhibition of endocytosis by PGE1, whereas a control-randomized peptide was without effect. These results demonstrate that PGE1 inhibits endocytosis and Gz mediates the inhibition.


Assuntos
Alprostadil/farmacologia , Endocitose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Sinalização do Cálcio , Linhagem Celular , Exocitose/efeitos dos fármacos , Subunidades alfa de Proteínas de Ligação ao GTP/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Fragmentos de Peptídeos/farmacologia , Toxina Pertussis/farmacologia , Ratos
18.
IEEE Trans Biomed Circuits Syst ; 10(2): 289-99, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26057983

RESUMO

A 30-µW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5- mm(2) chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 µA and 15 µA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pA(rms) and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm(2), weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 µM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV.


Assuntos
Dopamina/metabolismo , Telemetria/instrumentação , Tecnologia sem Fio/instrumentação , Conversão Análogo-Digital , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Microeletrodos , Processamento de Sinais Assistido por Computador/instrumentação
19.
PLoS One ; 10(12): e0144814, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26659855

RESUMO

The resemblance of lipid membrane models to physiological membranes determines how well molecular dynamics (MD) simulations imitate the dynamic behavior of cell membranes and membrane proteins. Physiological lipid membranes are composed of multiple types of phospholipids, and the leaflet compositions are generally asymmetric. Here we describe an approach for self-assembly of a Coarse-Grained (CG) membrane model with physiological composition and leaflet asymmetry using the MARTINI force field. An initial set-up of two boxes with different types of lipids according to the leaflet asymmetry of mammalian cell membranes stacked with 0.5 nm overlap, reliably resulted in the self-assembly of bilayer membranes with leaflet asymmetry resembling that of physiological mammalian cell membranes. Self-assembly in the presence of a fragment of the plasma membrane protein syntaxin 1A led to spontaneous specific positioning of phosphatidylionositol(4,5)bisphosphate at a positively charged stretch of syntaxin consistent with experimental data. An analogous approach choosing an initial set-up with two concentric shells filled with different lipid types results in successful assembly of a spherical vesicle with asymmetric leaflet composition. Self-assembly of the vesicle in the presence of the synaptic vesicle protein synaptobrevin 2 revealed the correct position of the synaptobrevin transmembrane domain. This is the first CG MD method to form a membrane with physiological lipid composition as well as leaflet asymmetry by self-assembly and will enable unbiased studies of the incorporation and dynamics of membrane proteins in more realistic CG membrane models.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato/química , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Esfingomielinas/química , Eletricidade Estática
20.
Sci Rep ; 5: 18477, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686301

RESUMO

We present non-faradaic electrochemical recordings of exocytosis from populations of mast and chromaffin cells using chemoreceptive neuron MOS (CνMOS) transistors. In comparison to previous cell-FET-biosensors, the CνMOS features control (CG), sensing (SG) and floating gates (FG), allows the quiescent point to be independently controlled, is CMOS compatible and physically isolates the transistor channel from the electrolyte for stable long-term recordings. We measured exocytosis from RBL-2H3 mast cells sensitized by IgE (bound to high-affinity surface receptors FcεRI) and stimulated using the antigen DNP-BSA. Quasi-static I-V measurements reflected a slow shift in surface potential () which was dependent on extracellular calcium ([Ca]o) and buffer strength, which suggests sensitivity to protons released during exocytosis. Fluorescent imaging of dextran-labeled vesicle release showed evidence of a similar time course, while un-sensitized cells showed no response to stimulation. Transient recordings revealed fluctuations with a rapid rise and slow decay. Chromaffin cells stimulated with high KCl showed both slow shifts and extracellular action potentials exhibiting biphasic and inverted capacitive waveforms, indicative of varying ion-channel distributions across the cell-transistor junction. Our approach presents a facile method to simultaneously monitor exocytosis and ion channel activity with high temporal sensitivity without the need for redox chemistry.


Assuntos
Técnicas Biossensoriais/métodos , Células Cromafins/química , Exocitose , Mastócitos/química , Animais , Dinitrofenóis/química , Técnicas Eletroquímicas , Imunoglobulina E/química , Ratos , Soroalbumina Bovina/química , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA