Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612514

RESUMO

Alzheimer's disease (AD) is the fifth leading cause of death among adults aged 65 and older, yet the onset and progression of the disease is poorly understood. What is known is that the presence of amyloid, particularly polymerized Aß42, defines when people are on the AD continuum. Interestingly, as AD progresses, less Aß42 is detectable in the plasma, a phenomenon thought to result from Aß becoming more aggregated in the brain and less Aß42 and Aß40 being transported from the brain to the plasma via the CSF. We propose that extracellular vesicles (EVs) play a role in this transport. EVs are found in bodily fluids such as blood, urine, and cerebrospinal fluid and carry diverse "cargos" of bioactive molecules (e.g., proteins, nucleic acids, lipids, metabolites) that dynamically reflect changes in the cells from which they are secreted. While Aß42 and Aß40 have been reported to be present in EVs, it is not known whether this interaction is specific for these peptides and thus whether amyloid-carrying EVs play a role in AD and/or serve as brain-specific biomarkers of the AD process. To determine if there is a specific interaction between Aß and EVs, we used isothermal titration calorimetry (ITC) and discovered that Aß42 and Aß40 bind to EVs in a manner that is sequence specific, saturable, and endothermic. In addition, Aß incubation with EVs overnight yielded larger amounts of bound Aß peptide that was fibrillar in structure. These findings point to a specific amyloid-EV interaction, a potential role for EVs in the transport of amyloid from the brain to the blood, and a role for this amyloid pool in the AD process.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Adulto , Humanos , Peptídeos , Proteínas Amiloidogênicas , Plasma
2.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405707

RESUMO

A recombinant lineage of the SARS-CoV-2 Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryo-EM structures of XBB.1.5, XBB.1.16, EG.5 and EG.5.1 spike (S) ectodomains to reveal reinforced 3-RBD-down receptor inaccessible closed states mediated by interprotomer receptor binding domain (RBD) interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters including stability, receptor binding and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.

3.
RSC Med Chem ; 14(3): 491-500, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36970142

RESUMO

Mycothiol S-transferase (MST) (encoded by the rv0443 gene) was previously identified as the enzyme responsible for the transfer of Mycothiol (MSH) to xenobiotic acceptors in Mycobacterium tuberculosis (M.tb) during xenobiotic stress. To further characterize the functionality of MST in vitro and the possible roles in vivo, X-ray crystallographic, metal-dependent enzyme kinetics, thermal denaturation studies, and antibiotic MIC determination in rv0433 knockout strain were performed. The binding of MSH and Zn2+ increases the melting temperature by 12.9 °C as a consequence of the cooperative stabilization of MST by both MSH and metal. The co-crystal structure of MST in complex with MSH and Zn2+ to 1.45 Å resolution supports the specific utilization of MSH as a substrate as well as affording insights into the structural requirements of MSH binding and the metal-assisted catalytic mechanism of MST. Contrary to the well-defined role of MSH in mycobacterial xenobiotic responses and the ability of MST to bind MSH, cell-based studies with an M.tb rv0443 knockout strain failed to provide evidence for a role of MST in processing of rifampicin or isoniazid. These studies suggest the necessity of a new direction to identify acceptors of the enzyme and better define the biological role of MST in mycobacteria.

4.
Cell Rep ; 42(2): 112044, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36708513

RESUMO

Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq). We identify five HIV-1/HCV cross-reactive antibodies demonstrating binding and functional cross-reactivity between HIV-1 and HCV envelope glycoproteins. All five antibodies show exceptional HCV neutralization breadth and effector functions against both HIV-1 and HCV. One antibody, mAb688, also cross-reacts with influenza and coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We examine the development of these antibodies using next-generation sequencing analysis and lineage tracing and find that somatic hypermutation established and enhanced this reactivity. These antibodies provide a potential future direction for therapeutic and vaccine development against current and emerging infectious diseases. More broadly, chronic co-infection represents a complex immunological challenge that can provide insights into the fundamental rules that underly antibody-antigen specificity.


Assuntos
COVID-19 , Coinfecção , Infecções por HIV , HIV-1 , Hepatite C , Humanos , Hepacivirus , Anticorpos Neutralizantes , SARS-CoV-2 , Anticorpos Anti-HIV
5.
Cell Rep ; 39(13): 111009, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35732171

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sub-lineage has gained in proportion relative to BA.1. Because spike (S) protein variations may underlie differences in their pathobiology, here we determine cryoelectron microscopy (cryo-EM) structures of the BA.2 S ectodomain and compare these with previously determined BA.1 S structures. BA.2 receptor-binding domain (RBD) mutations induce remodeling of the RBD structure, resulting in tighter packing and improved thermostability. Interprotomer RBD interactions are enhanced in the closed (or 3-RBD-down) BA.2 S, while the fusion peptide is less accessible to antibodies than in BA.1. Binding and pseudovirus neutralization assays reveal extensive immune evasion while defining epitopes of two outer RBD face-binding antibodies, DH1044 and DH1193, that neutralize both BA.1 and BA.2. Taken together, our results indicate that stabilization of the closed state through interprotomer RBD-RBD packing is a hallmark of the Omicron variant and show differences in key functional regions in the BA.1 and BA.2 S proteins.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Microscopia Crioeletrônica , Humanos , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus
6.
PLoS Pathog ; 17(7): e1009671, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34293041

RESUMO

Allosteric integrase inhibitors (ALLINIs) are a class of experimental anti-HIV agents that target the noncatalytic sites of the viral integrase (IN) and interfere with the IN-viral RNA interaction during viral maturation. Here, we report a highly potent and safe pyrrolopyridine-based ALLINI, STP0404, displaying picomolar IC50 in human PBMCs with a >24,000 therapeutic index against HIV-1. X-ray structural and biochemical analyses revealed that STP0404 binds to the host LEDGF/p75 protein binding pocket of the IN dimer, which induces aberrant IN oligomerization and blocks the IN-RNA interaction. Consequently, STP0404 inhibits proper localization of HIV-1 RNA genomes in viral particles during viral maturation. Y99H and A128T mutations at the LEDGF/p75 binding pocket render resistance to STP0404. Extensive in vivo pharmacological and toxicity investigations demonstrate that STP0404 harbors outstanding therapeutic and safety properties. Overall, STP0404 is a potent and first-in-class ALLINI that targets LEDGF/p75 binding site and has advanced to a human trial.


Assuntos
Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Cães , Infecções por HIV/tratamento farmacológico , Humanos , Ratos , Ratos Sprague-Dawley , Replicação Viral/efeitos dos fármacos
7.
J Biol Chem ; 296: 100630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823154

RESUMO

Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans-induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.


Assuntos
Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Fatores Imunológicos/farmacologia , Interleucina-18/genética , Receptores de Interleucina-18/genética , Anti-Inflamatórios/metabolismo , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fatores Imunológicos/biossíntese , Inflamação , Interferon gama/genética , Interferon gama/imunologia , Interleucina-18/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Síndrome de Ativação Macrofágica/tratamento farmacológico , NF-kappa B/genética , NF-kappa B/imunologia , Cultura Primária de Células , Receptores de Interleucina-18/antagonistas & inibidores , Receptores de Interleucina-18/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Tratamento Farmacológico da COVID-19
8.
Nat Microbiol ; 6(4): 435-444, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649557

RESUMO

Early events of the human immunodeficiency virus 1 (HIV-1) lifecycle, such as post-entry virus trafficking, uncoating and nuclear import, are poorly characterized because of limited understanding of virus-host interactions. Here, we used mass spectrometry-based proteomics to delineate cellular binding partners of curved HIV-1 capsid lattices and identified Sec24C as an HIV-1 host dependency factor. Gene deletion and complementation in Jurkat cells revealed that Sec24C facilitates infection and markedly enhances HIV-1 spreading infection. Downregulation of Sec24C in HeLa cells substantially reduced HIV-1 core stability and adversely affected reverse transcription, nuclear import and infectivity. Live-cell microscopy showed that Sec24C co-trafficked with HIV-1 cores in the cytoplasm during virus ingress. Biochemical assays demonstrated that Sec24C directly and specifically interacted with hexameric capsid lattices. A 2.3-Å resolution crystal structure of Sec24C228-242 in the complex with a capsid hexamer revealed that the Sec24C FG-motif bound to a pocket comprised of two adjoining capsid subunits. Combined with previous data1-4, our findings indicate that a capsid-binding FG-motif is conserved in unrelated proteins present in the cytoplasm (Sec24C), the nuclear pore (Nup153; refs. 3,4) and the nucleus (CPSF6; refs. 1,2). We propose that these virus-host interactions during HIV-1 trafficking across different cellular compartments are crucial for productive infection of target cells.


Assuntos
HIV-1/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sítios de Ligação , Capsídeo/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Lentivirus de Primatas/metabolismo , Lentivirus de Primatas/fisiologia , Poro Nuclear/metabolismo , Ligação Proteica , Transcrição Reversa , Relação Estrutura-Atividade , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Integração Viral
9.
Front Immunol ; 11: 201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153567

RESUMO

The complement system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Besides driving lectin pathway (LP) activation, the mannan-binding lectin (MBL)-associated serine proteases (MASPs) also play a key role in regulating the alternative pathway (AP). We evaluated the effects of N-acetylgalactosamine (GalNAc)-conjugated MASP-1 and MASP-2 duplexes in vitro and in mice with and without arthritis to examine whether knockdown of MASP-1 and MASP-2 expression affects the development of arthritis. GalNAc-siRNAs for MASP-1 and MASP-2 demonstrated robust silencing of MASP-1 or MASP-2 at pM concentrations in vitro. To evaluate the impact of silencing in arthritic mice, we used the collagen antibody-induced arthritis (CAIA) mouse model of RA. Mice were injected a 10 mg/kg dose of GalNAc-siRNAs 3x s.q. prior to the induction of CAIA. Liver gene expression was examined using qRT-PCR, and protein levels were confirmed in the circulation by sandwich immunoassays and Western blot. At day 10, CAIA mice separately treated with MASP-1 and MASP-2 duplexes had a specific reduction in expression of liver MASP-1 (70-95%, p < 0.05) and MASP-2 (90%, p < 0.05) mRNA, respectively. MASP-1-siRNA treatment resulted in a 95% reduction in levels of MASP-1 protein in circulation with no effect on MASP-2 levels and clinical disease activity (CDA). In mice injected with MASP-2 duplex, there was a significant (p < 0.05) 90% decrease in ex vivo C4b deposition on mannan, with nearly complete elimination of MASP-2 in the circulation. MASP-2 silencing initially significantly decreased CDA by 60% but subsequently changed to a 40% decrease vs. control. Unexpectedly, GalNAc-siRNA-mediated knockdown of MASP-1 and MASP-2 revealed a marked effect of these proteins on the transcription of FD under normal physiological conditions, whereas LPS-induced inflammatory conditions reversed this effect on FD levels. LPS is recognized by Toll-like receptor 4 (TLR4), we found MBL not only binds to TLR4 an interaction with a Kd of 907 nM but also upregulated FD expression in differentiated adipocytes. We show that MASP-2 knockdown impairs the development of RA and that the interrelationship between proteins of the LP and the AP may extend to the transcriptional modulation of the FD gene.


Assuntos
Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Fator D do Complemento/metabolismo , Via Alternativa do Complemento/genética , Lectina de Ligação a Manose da Via do Complemento/genética , Transcrição Gênica/genética , Animais , Fator D do Complemento/genética , Expressão Gênica , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção
10.
Elife ; 82019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31120420

RESUMO

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising new class of antiretroviral agents that disrupt proper viral maturation by inducing hyper-multimerization of IN. Here we show that lead pyridine-based ALLINI KF116 exhibits striking selectivity for IN tetramers versus lower order protein oligomers. IN structural features that are essential for its functional tetramerization and HIV-1 replication are also critically important for KF116 mediated higher-order IN multimerization. Live cell imaging of single viral particles revealed that KF116 treatment during virion production compromises the tight association of IN with capsid cores during subsequent infection of target cells. We have synthesized the highly active (-)-KF116 enantiomer, which displayed EC50 of ~7 nM against wild type HIV-1 and ~10 fold higher, sub-nM activity against a clinically relevant dolutegravir resistant mutant virus suggesting potential clinical benefits for complementing dolutegravir therapy with pyridine-based ALLINIs.


HIV-1 inserts its genetic code into human genomes, turning healthy cells into virus factories. To do this, the virus uses an enzyme called integrase. Front-line treatments against HIV-1 called "integrase strand-transfer inhibitors" stop this enzyme from working. These inhibitors have helped to revolutionize the treatment of HIV/AIDS by protecting the cells from new infections. But, the emergence of drug resistance remains a serious problem. As the virus evolves, it changes the shape of its integrase protein, substantially reducing the effectiveness of the current therapies. One way to overcome this problem is to develop other therapies that can kill the drug resistant viruses by targeting different parts of the integrase protein. It should be much harder for the virus to evolve the right combination of changes to escape two or more treatments at once. A promising class of new compounds are "allosteric integrase inhibitors". These chemical compounds target a part of the integrase enzyme that the other treatments do not yet reach. Rather than stopping the integrase enzyme from inserting the viral code into the human genome, the new inhibitors make integrase proteins clump together and prevent the formation of infectious viruses. At the moment, these compounds are still experimental. Before they are ready for use in people, researchers need to better understand how they work, and there are several open questions to answer. Integrase proteins work in groups of four and it is not clear how the new compounds make the integrases form large clumps, or what this does to the virus. Understanding this should allow scientists to develop improved versions of the drugs. To answer these questions, Koneru et al. first examined two of the new compounds. A combination of molecular analysis and computer modelling revealed how they work. The compounds link many separate groups of four integrases with each other to form larger and larger clumps, essentially a snowball effect. Live images of infected cells showed that the clumps of integrase get stuck outside of the virus's protective casing. This leaves them exposed, allowing the cell to destroy the integrase enzymes. Koneru et al. also made a new compound, called (-)-KF116. Not only was this compound able to tackle normal HIV-1, it could block viruses resistant to the other type of integrase treatment. In fact, in laboratory tests, it was 10 times more powerful against these resistant viruses. Together, these findings help to explain how allosteric integrase inhibitors work, taking scientists a step closer to bringing them into the clinic. In the future, new versions of the compounds, like (-)-KF116, could help to tackle drug resistance in HIV-1.


Assuntos
Antivirais/farmacologia , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Multimerização Proteica , Piridinas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Antivirais/química , Células HEK293 , Integrase de HIV/química , Inibidores de Integrase de HIV/química , Células HeLa , Humanos , Modelos Moleculares , Domínios Proteicos , Piridinas/química , Estereoisomerismo
11.
ACS Med Chem Lett ; 10(2): 215-220, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30783506

RESUMO

Allosteric HIV-1 integrase inhibitors (ALLINIs) are a new class of potential antiretroviral therapies with a unique mechanism of action and drug resistance profile. To further extend this class of inhibitors via a scaffold hopping approach, we have synthesized a series of analogues possessing an isoquinoline ring system. Lead compound 6l binds in the v-shaped pocket at the IN dimer interface and is highly selective for promoting higher-order multimerization of inactive IN over inhibiting IN-LEDGF/p75 binding. Importantly, 6l potently inhibited HIV-1NL4-3 (A128T IN), which confers marked resistance to archetypal quinoline-based ALLINIs. Thermal degradation studies indicated that at elevated temperatures the acetic acid side chain of specific isoquinoline derivatives undergo decarboxylation reactions. This reactivity has implications for the synthesis of various ALLINI analogues.

12.
Org Biomol Chem ; 15(31): 6679, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28752886

RESUMO

Correction for 'Zwitterionic pyrrolidene-phosphonates: inhibitors of the glycoside hydrolase-like phosphorylase Streptomyces coelicolor GlgEI-V279S' by Sri Kumar Veleti et al., Org. Biomol. Chem., 2017, 15, 3884-3891.

13.
Org Biomol Chem ; 15(18): 3884-3891, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28422240

RESUMO

We synthesized and evaluated new zwitterionic inhibitors against glycoside hydrolase-like phosphorylase Streptomyces coelicolor (Sco) GlgEI-V279S which plays a role in α-glucan biosynthesis. Sco GlgEI-V279S serves as a model enzyme for validated anti-tuberculosis (TB) target Mycobacterium tuberculosis (Mtb) GlgE. Pyrrolidine inhibitors 5 and 6 were designed based on transition state considerations and incorporate a phosphonate on the pyrrolidine moiety to expand the interaction network between the inhibitor and the enzyme active site. Compounds 5 and 6 inhibited Sco GlgEI-V279S with Ki = 45 ± 4 µM and 95 ± 16 µM, respectively, and crystal structures of Sco GlgE-V279S-5 and Sco GlgE-V279S-6 were obtained at a 3.2 Å and 2.5 Å resolution, respectively.


Assuntos
Glicosídeo Hidrolases/antagonistas & inibidores , Organofosfonatos/química , Fosforilases/antagonistas & inibidores , Pirróis/química , Pirróis/farmacologia , Streptomyces coelicolor/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Fosforilases/química , Conformação Proteica
14.
Sci Rep ; 5: 12830, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26245983

RESUMO

GlgE is a bacterial maltosyltransferase that catalyzes the elongation of a cytosolic, branched α-glucan. In Mycobacterium tuberculosis (M. tb), inactivation of GlgE (Mtb GlgE) results in the rapid death of the organism due to a toxic accumulation of the maltosyl donor, maltose-1-phosphate (M1P), suggesting that GlgE is an intriguing target for inhibitor design. In this study, the crystal structures of the Mtb GlgE in a binary complex with maltose and a ternary complex with maltose and a maltosyl-acceptor molecule, maltohexaose, were solved to 3.3 Å and 4.0 Å, respectively. The maltohexaose structure reveals a dominant site for α-glucan binding. To obtain more detailed interactions between first generation, non-covalent inhibitors and GlgE, a variant Streptomyces coelicolor GlgEI (Sco GlgEI-V279S) was made to better emulate the Mtb GlgE M1P binding site. The structure of Sco GlgEI-V279S complexed with α-maltose-C-phosphonate (MCP), a non-hydrolyzable substrate analogue, was solved to 1.9 Å resolution, and the structure of Sco GlgEI-V279S complexed with 2,5-dideoxy-3-O-α-D-glucopyranosyl-2,5-imino-D-mannitol (DDGIM), an oxocarbenium mimic, was solved to 2.5 Å resolution. These structures detail important interactions that contribute to the inhibitory activity of these compounds, and provide information on future designs that may be exploited to improve upon these first generation GlgE inhibitors.


Assuntos
Inibidores Enzimáticos/química , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias , Domínio Catalítico , Cristalografia por Raios X
15.
Org Biomol Chem ; 13(29): 8080, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26134153

RESUMO

Correction for 'Synthesis of 2-deoxy-2,2-difluoro-α-maltosyl fluoride and its X-ray structure in complex with Streptomyces coelicolor GlgEI-V279S' by Sandeep Thanna et al., Org. Biomol. Chem., 2015, DOI: 10.1039/c5ob00867k.

16.
Org Biomol Chem ; 13(27): 7542-50, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26072729

RESUMO

Streptomyces coelicolor (Sco) GlgEI is a glycoside hydrolase involved in α-glucan biosynthesis and can be used as a model enzyme for structure-based inhibitor design targeting Mycobacterium tuberculosis (Mtb) GlgE. The latter is a genetically validated drug target for the development of anti-Tuberculosis (TB) treatments. Inhibition of Mtb GlgE results in a lethal buildup of the GlgE substrate maltose-1-phosphate (M1P). However, Mtb GlgE is difficult to crystallize and affords lower resolution X-ray structures. Sco GlgEI-V279S on the other hand crystallizes readily, produces high resolution X-ray data, and has active site topology identical to Mtb GlgE. We report the X-ray structure of Sco GlgEI-V279S in complex with 2-deoxy-2,2-difluoro-α-maltosyl fluoride (α-MTF, 5) at 2.3 Å resolution. α-MTF was designed as a non-hydrolysable mimic of M1P to probe the active site of GlgE1 prior to covalent bond formation without disruption of catalytic residues. The α-MTF complex revealed hydrogen bonding between Glu423 and the C1F which provides evidence that Glu423 functions as proton donor during catalysis. Further, hydrogen bonding between Arg392 and the axial C2 difluoromethylene moiety of α-MTF was observed suggesting that the C2 position tolerates substitution with hydrogen bond acceptors. The key step in the synthesis of α-MDF was transformation of peracetylated 2-fluoro-maltal 1 into peracetylated 2,2-difluoro-α-maltosyl fluoride 2 in a single step via the use of Selectfluor®.


Assuntos
Glicosídeo Hidrolases/química , Maltose/análogos & derivados , Maltose/química , Maltose/síntese química , Streptomyces coelicolor/enzimologia , Biocatálise/efeitos dos fármacos , Bioensaio , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Maltose/farmacologia , Modelos Moleculares , Especificidade por Substrato/efeitos dos fármacos
17.
ACS Infect Dis ; 1(2): 91-97, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25897434

RESUMO

Isoxyl and Thiacetazone are two antitubercular prodrugs formerly used in the clinical treatment of tuberculosis. Although both prodrugs have recently been shown to kill Mycobacterium tuberculosis through the inhibition of the dehydration step of the type II fatty acid synthase pathway, their detailed mechanism of inhibition, the precise number of enzymes involved in their activation and the nature of their activated forms remained unknown. We here demonstrate that both Isoxyl and Thiacetazone specifically and covalently react with a cysteine residue (Cys61) of the HadA subunit of the dehydratase thereby inhibiting HadAB activity. Our results unveil for the first time the nature of the active forms of Isoxyl and Thiacetazone and explain the basis for the structure-activity relationship of and resistance to these thiourea prodrugs. Our results further indicate that the flavin-containing monooxygenase EthA is most likely the only enzyme required for the activation of ISO and TAC in mycobacteria.

18.
J Org Chem ; 79(20): 9444-50, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25137149

RESUMO

Long treatment times, poor drug compliance, and natural selection during treatment of Mycobacterium tuberculosis (Mtb) have given rise to extensively drug-resistant tuberculosis (XDR-TB). As a result, there is a need to identify new antituberculosis drug targets. Mtb GlgE is a maltosyl transferase involved in α-glucan biosynthesis. Mutation of GlgE in Mtb increases the concentration of maltose-1-phosphate (M1P), one substrate for GlgE, causing rapid cell death. We have designed 2,5-dideoxy-3-O-α-d-glucopyranosyl-2,5-imino-d-mannitol (9) to act as an inhibitor of GlgE. Compound 9 was synthesized using a convergent synthesis by coupling thioglycosyl donor 14 and 5-azido-3-O-benzyl-5-deoxy-1,2-O-isopropylidene-ß-d-fructopyranose (23) to form disaccharide 24. A reduction and intramolecular reductive amination transformed the intermediate disaccharide 24 to the desired pyrolidine 9. Compound 9 inhibited both Mtb GlgE and a variant of Streptomyces coelicolor (Sco) GlgEI with Ki = 237 ± 27 µM and Ki = 102 ± 7.52 µM, respectively. The results confirm that a Sco GlgE-V279S variant can be used as a model for Mtb GlgE. In conclusion, we designed a lead transition state inhibitor of GlgE, which will be instrumental in further elucidation of the enzymatic mechanism of Mtb GlgE.


Assuntos
Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Dissacarídeos/síntese química , Farmacorresistência Bacteriana/efeitos dos fármacos , Glucanos/biossíntese , Glucanos/química , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/química , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efeitos dos fármacos , Fosfatos Açúcares/química , Antituberculosos/química , Antituberculosos/farmacologia , Dissacarídeos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/metabolismo , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo
19.
Bioorg Med Chem ; 22(4): 1404-11, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24461562

RESUMO

The emergence of extensively drug-resistant tuberculosis (XDR-TB) necessitates the need to identify new anti-tuberculosis drug targets as well as to better understand essential biosynthetic pathways. GlgE is a Mycobacterium tuberculosis (Mtb) encoded maltosyltransferase involved in α-glucan biosynthesis. Deletion of GlgE in Mtb results in the accumulation of M1P within cells leading to rapid death of the organism. To inhibit GlgE a maltose-C-phosphonate (MCP) 13 was designed to act as an isosteric non-hydrolysable mimic of M1P. MCP 13, the only known inhibitor of Mtb GlgE, was successfully synthesized using a Wittig olefination as a key step in transforming maltose to the desired product. MCP 13 inhibited Mtb GlgE with an IC50=230 ± 24 µM determined using a coupled enzyme assay which measures orthophosphate release. The requirement of M1P for the assay necessitated the development of an expedited synthetic route to M1P from an intermediate used in the MCP 13 synthesis. In conclusion, we designed a substrate analogue of M1P that is the first to exhibit Mtb GlgE inhibition.


Assuntos
Antituberculosos/síntese química , Inibidores Enzimáticos/síntese química , Maltose/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Organofosfonatos/síntese química , Ácidos Fosforosos/química , Fosfatos Açúcares/química , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucanos/biossíntese , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Maltose/síntese química , Maltose/química , Maltose/farmacologia , Mycobacterium tuberculosis/metabolismo , Organofosfonatos/química , Organofosfonatos/farmacologia , Fosfatos Açúcares/síntese química , Fosfatos Açúcares/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA