Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 156: 107038, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33285289

RESUMO

Phylogenetic relationships among the squids and cuttlefishes (Cephalopoda:Decapodiformes) have resisted clarification for decades, despite multiple analyses of morphological, molecular and combined data sets. More recently, analyses of complete mitochondrial genomes and hundreds of nuclear loci have yielded similarly ambiguous results. In this study, we re-evaluate hypotheses of decapodiform relationships by increasing taxonomic breadth and utilizing higher-quality genome and transcriptome data for several taxa. We also employ analytical approaches to (1) identify contamination in transcriptome data, (2) better assess model adequacy, and (3) account for potential biases. Using this larger data set, we consistently recover a clade comprising Myopsida (closed-eye squid), Sepiida (cuttlefishes), and Oegopsida (open-eye squid) that is sister to a Sepiolida (bobtail and bottletail squid) clade. Idiosepiida (pygmy squid) is consistently recovered as the sister group to all sampled decapodiform lineages. Further, a weighted Shimodaira-Hasegawa test applied to one of our larger data matrices rejects all alternatives to these ordinal-level relationships. At present, available nuclear genome-scale data support nested clades of relatively large-bodied decapodiform cephalopods to the exclusion of pygmy squids, but improved taxon sampling and additional genomic data will be needed to test these novel hypotheses rigorously.


Assuntos
Decapodiformes/classificação , Decapodiformes/genética , Filogenia , Animais , Genoma Mitocondrial , Funções Verossimilhança , Transcriptoma/genética
2.
Mol Phylogenet Evol ; 128: 88-97, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29870859

RESUMO

The oegopsid squid family Onychoteuthidae was recently revised based on morphology, but sufficient material for a complementary molecular analysis has not been available until now. In the present study, over 250 sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA for 222 individuals were analysed to create a combined phylogeny for the family. Results support monophyly for the family and all seven onychoteuthid genera (including Moroteuthopsis, established herein as the senior genus name for species formerly attributed to Kondakovia); 29 genetically distinct species were recovered, with the BIN (Barcode Index Number) analysis for COI showing good congruence overall with morphological species groupings. No sequences were available for five additional known species, making the total family diversity likely to exceed 34 species. Seven of the BINs formed in this study appear to represent undescribed taxa, suggesting that even in this relatively well-studied family, much additional work remains before a comprehensive understanding of the diversity and evolutionary relationships for the Onychoteuthidae can be achieved.


Assuntos
Cefalópodes/classificação , Mitocôndrias/genética , Filogenia , Animais , Cefalópodes/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Especificidade da Espécie
3.
Mol Phylogenet Evol ; 118: 330-342, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989097

RESUMO

Historically, deep-level relationships within the molluscan class Cephalopoda (squids, cuttlefishes, octopods and their relatives) have remained elusive due in part to the considerable morphological diversity of extant taxa, a limited fossil record for species that lack a calcareous shell and difficulties in sampling open ocean taxa. Many conflicts identified by morphologists in the early 1900s remain unresolved today in spite of advances in morphological, molecular and analytical methods. In this study we assess the utility of transcriptome data for resolving cephalopod phylogeny, with special focus on the orders of Decapodiformes (open-eye squids, bobtail squids, cuttlefishes and relatives). To do so, we took new and previously published transcriptome data and used a unique cephalopod core ortholog set to generate a dataset that was subjected to an array of filtering and analytical methods to assess the impacts of: taxon sampling, ortholog number, compositional and rate heterogeneity and incongruence across loci. Analyses indicated that datasets that maximized taxonomic coverage but included fewer orthologs were less stable than datasets that sacrificed taxon sampling to increase the number of orthologs. Clades recovered irrespective of dataset, filtering or analytical method included Octopodiformes (Vampyroteuthis infernalis + octopods), Decapodiformes (squids, cuttlefishes and their relatives), and orders Oegopsida (open-eyed squids) and Myopsida (e.g., loliginid squids). Ordinal-level relationships within Decapodiformes were the most susceptible to dataset perturbation, further emphasizing the challenges associated with uncovering relationships at deep nodes in the cephalopod tree of life.


Assuntos
Cefalópodes/classificação , Transcriptoma , Animais , Teorema de Bayes , Cefalópodes/genética , Decapodiformes/classificação , Decapodiformes/genética , Fósseis , Funções Verossimilhança , Filogenia
4.
Integr Comp Biol ; 56(4): 493-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27471225

RESUMO

Life persists, even under extremely harsh conditions. While the existence of extremophiles is well known, the mechanisms by which these organisms evolve, perform basic metabolic functions, reproduce, and survive under extreme physical stress are often entirely unknown. Recent technological advances in terms of both sampling and studying extremophiles have yielded new insight into their evolution, physiology and behavior, from microbes and viruses to plants to eukaryotes. The goal of the "Life on the Edge-the Biology of Organisms Inhabiting Extreme Environments" symposium was to unite researchers from taxonomically and methodologically diverse backgrounds to highlight new advances in extremophile biology. Common themes and new insight that emerged from the symposium included the important role of symbiotic associations, the continued challenges associated with sampling and studying extremophiles and the important role these organisms play in terms of studying climate change. As we continue to explore our planet, especially in difficult to reach areas from the poles to the deep sea, we expect to continue to discover new and extreme circumstances under which life can persist.


Assuntos
Ambientes Extremos , Evolução Biológica , Mudança Climática
5.
BMC Bioinformatics ; 15: 350, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25407802

RESUMO

BACKGROUND: Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. RESULTS: We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). CONCLUSIONS: Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.


Assuntos
Luz , Anotação de Sequência Molecular/métodos , Filogenia , Transcriptoma , Visão Ocular/genética , Algoritmos , Animais , Proteínas do Olho/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Análise de Sequência de Proteína
6.
Int J Syst Evol Microbiol ; 63(Pt 12): 4724-4729, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23959829

RESUMO

A novel moderately thermophilic, heterotrophic bacterium was isolated from a deep-sea hydrothermal vent deposit from the Mariner field along the Eastern Lau Spreading Center of the south-western Pacific Ocean. Cells were short motile rods (about 0.4×0.8 µm) that occurred singly or in pairs and were surrounded by a sheath-like membrane or 'toga'. The cells grew between 45 and 65 °C (optimum 57-60 °C) and at pH 4.1-6.0 (optimum pH 5.5-5.7) and grew optimally at 3 % (w/v) NaCl. The isolate grew on a range of carbon and proteinaceous substrates and reduced sulfur. The G+C content of the DNA was about 45 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed the new isolate as a deeply diverging lineage within the order Thermotogales. Based on the physiological, morphological and phylogenetic data, the isolate represents a novel species of a new genus with the proposed name Mesoaciditoga lauensis gen. nov., sp. nov. The type strain of Mesoaciditoga lauensis is cd-1655R(T) ( = DSM 25116(T) = OCM 1212(T)).


Assuntos
Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Fontes Hidrotermais/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/isolamento & purificação , Processos Heterotróficos , Dados de Sequência Molecular , Oceano Pacífico , Fosfolipídeos/química , RNA Ribossômico 16S/genética
7.
Mol Biol Evol ; 30(1): 215-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22977117

RESUMO

An ambitious, yet fundamental goal for comparative biology is to understand the evolutionary relationships for all of life. However, many important taxonomic groups have remained recalcitrant to inclusion into broader scale studies. Here, we focus on collection of 9 new 454 transcriptome data sets from Ostracoda, an ancient and diverse group with a dense fossil record, which is often undersampled in broader studies. We combine the new transcriptomes with a new morphological matrix (including fossils) and existing expressed sequence tag, mitochondrial genome, nuclear genome, and ribosomal DNA data. Our analyses lead to new insights into ostracod and pancrustacean phylogeny. We obtained support for three epic pancrustacean clades that likely originated in the Cambrian: Oligostraca (Ostracoda, Mystacocarida, Branchiura, and Pentastomida); Multicrustacea (Copepoda, Malacostraca, and Thecostraca); and a clade we refer to as Allotriocarida (Hexapoda, Remipedia, Cephalocarida, and Branchiopoda). Within the Oligostraca clade, our results support the unresolved question of ostracod monophyly. Within Multicrustacea, we find support for Thecostraca plus Copepoda, for which we suggest the name Hexanauplia. Within Allotriocarida, some analyses support the hypothesis that Remipedia is the sister taxon to Hexapoda, but others support Branchiopoda + Cephalocarida as the sister group of hexapods. In multiple different analyses, we see better support for equivocal nodes using slow-evolving genes or when excluding distant outgroups, highlighting the increased importance of conditional data combination in this age of abundant, often anonymous data. However, when we analyze the same set of species and ignore rate of gene evolution, we find higher support when including all data, more in line with a "total evidence" philosophy. By concatenating molecular and morphological data, we place pancrustacean fossils in the phylogeny, which can be used for studies of divergence times in Pancrustacea, Arthropoda, or Metazoa. Our results and new data will allow for attributes of Ostracoda, such as its amazing fossil record and diverse biology, to be leveraged in broader scale comparative studies. Further, we illustrate how adding extensive next-generation sequence data from understudied groups can yield important new phylogenetic insights into long-standing questions, especially when carefully analyzed in combination with other data.


Assuntos
Crustáceos/classificação , Crustáceos/genética , Fósseis , Filogenia , Transcriptoma , Animais , Núcleo Celular/genética , DNA Ribossômico/genética , Bases de Dados Genéticas , Evolução Molecular , Etiquetas de Sequências Expressas , Genoma Mitocondrial , Insetos/classificação , Insetos/genética , Alinhamento de Sequência , Análise de Sequência de DNA
8.
BMC Evol Biol ; 12: 129, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22839506

RESUMO

BACKGROUND: The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. RESULTS: Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions) is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. DISCUSSION: Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment.


Assuntos
Evolução Biológica , Cefalópodes/genética , Ecossistema , Animais , Cefalópodes/anatomia & histologia , Cefalópodes/classificação , Cefalópodes/fisiologia , Filogenia
9.
Stand Genomic Sci ; 7(1): 175-88, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23451296

RESUMO

The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, "Paths to Cephalopod Genomics- Strategies, Choices, Organization," held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper.

10.
Mol Phylogenet Evol ; 56(1): 77-90, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20348002

RESUMO

Squids, cuttlefish and bobtail squids comprise the molluscan superorder Decapodiformes (Mollusca: Cephalopoda). Although these animals exemplify the morphological and ecological diversity seen in Cephalopoda, no previous study has focused resolving decapodiform relationships, particularly within Oegopsida, a large order comprised of pelagic squid. To further clarify the phylogenetic history of Decapodiformes, and Oegopsida in particular, molecular data for five genes (18S rRNA, 28S rRNA, Histone H3, 16S rRNA, COI) was collected for 90 taxa representing all major lineages and families and evaluated using parsimony, likelihood, and Bayesian analysis. Although ordinal relationships were sensitive to analytical method, several conclusions can be inferred: the pelagic order Myopsida is closely related to the benthic sepioids, whose relationships were ambiguous, and Bathyteuthoidea is distinct from Oegopsida. Within Oegopsida several clades are consistently recovered, some with previous morphological support (e.g. chiroteuthid, lepidoteuthid, histioteuthid families) while others suggest novel relationships (e.g. Architeuthidae+Neoteuthidae). This study, with its broad coverage of taxa, provides the first in-depth analysis of Decapodiformes with special focus on the morphologically and biogeographically diverse Oegopsida, confirms several sister-taxon relationships, and provides new hypotheses of cephalopod evolution in the open ocean.


Assuntos
Decapodiformes/classificação , Evolução Molecular , Filogenia , Animais , Teorema de Bayes , Decapodiformes/genética , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Proc Natl Acad Sci U S A ; 103(20): 7723-8, 2006 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-16675549

RESUMO

Monoplacophorans are among the rarest members of the phylum Mollusca. Previously only known from fossils since the Cambrian, the first living monoplacophoran was discovered during the famous second Galathea deep-sea expedition. The anatomy of these molluscs shocked the zoological community for presenting serially repeated gills, nephridia, and eight sets of dorsoventral pedal retractor muscles. Seriality of organs in supposedly independent molluscan lineages, i.e., in chitons and the deep-sea living fossil monoplacophorans, was assumed to be a relic of ancestral molluscan segmentation and was commonly accepted to support a direct relationship with annelids. We were able to obtain one specimen of a monoplacophoran Antarctic deep-sea species for molecular study. The first molecular data on monoplacophorans, analyzed together with the largest data set of molluscs ever assembled, clearly illustrate that monoplacophorans and chitons form a clade. This "Serialia" concept may revolutionize molluscan systematics and may have important implications for metazoan evolution as it allows for new interpretations for primitive segmentation in molluscs.


Assuntos
Evolução Biológica , Fósseis , Moluscos/anatomia & histologia , Moluscos/classificação , Poliplacóforos/anatomia & histologia , Poliplacóforos/classificação , Animais , Sequência de Bases , Dados de Sequência Molecular , Moluscos/genética , Filogenia , Poliplacóforos/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA