Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659154

RESUMO

Bryophytes, including the lineages of mosses, liverworts, and hornworts, are the second-largest photoautotroph group on Earth. Recent work across terrestrial ecosystems has highlighted how bryophytes retain and control water, fix substantial amounts of carbon (C), and contribute to nitrogen (N) cycles in forests (boreal, temperate, and tropical), tundra, peatlands, grasslands, and deserts. Understanding how changing climate affects bryophyte contributions to global cycles in different ecosystems is of primary importance. However, because of their small physical size, bryophytes have been largely ignored in research on water, C, and N cycles at global scales. Here, we review the literature on how bryophytes influence global biogeochemical cycles, and we highlight that while some aspects of global change represent critical tipping points for survival, bryophytes may also buffer many ecosystems from change due to their capacity for water, C, and N uptake and storage. However, as the thresholds of resistance of bryophytes to temperature and precipitation regime changes are mostly unknown, it is challenging to predict how long this buffering capacity will remain functional. Furthermore, as ecosystems shift their global distribution in response to changing climate, the size of different bryophyte-influenced biomes will change, resulting in shifts in the magnitude of bryophyte impacts on global ecosystem functions.

2.
Oecologia ; 201(4): 1005-1015, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37039893

RESUMO

Climate change can alter predator-prey interactions when predators and prey have different thermal preferences as temperature change can exacerbate thermal mismatches (also called thermal asymmetry) with population-level consequences. We tested this using micro-arthropod predators (Stratiolaelaps scimitus) and prey (Folsomia candida) that differ in their temperature optima to examine predator-prey interactions across two temperature ranges, a cool (12 and 20 °C) and warm (20 and 26 °C) range. We predict that the lower thermal preference and optimum in F. candida will alter top-down control (i.e., interaction strength) by predators with interaction strength being strongest at intermediate temperatures, coinciding with F. candida thermal optimum. Predators and prey were placed in mesocosms, whereafter we measured population (predator and prey abundance), trait-based (average predator and prey body mass, and prey body length distribution), and predator-prey indices (predator-prey mass ratio (PPMR), Dynamic Index, and Log Response Ratio) to determine how temperature affected their interactions. Prey populations were the highest at intermediate temperatures (average temperature exposure: 16-23 °C) but declined at warmer temperatures (average temperature exposure: 24.5-26 °C). Predators consistently lowered prey abundances and average prey mass increased when predators were added. Top-down control was the greatest at intermediate temperatures (indicated by Log Response Ratio) when temperatures were near or below the thermal optimum for both species. Temperature-related prey declines negated top-down control under the warmest conditions suggesting that mismatches in thermal performance between predators and their prey will alter the strength and dominance of top-down or bottom-up forces of predator-prey interactions in a warmer world.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Temperatura , Temperatura Baixa , Mudança Climática
3.
Ecol Evol ; 11(22): 16070-16081, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824812

RESUMO

Ecologists have long debated the properties that confer stability to complex, species-rich ecological networks. Species-level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up-to-date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs. The stability of the network was best explained by two factors: strong correlations between interaction strengths and the blocked, nonrandom trophic structure of the web. These two factors could stabilize our model food webs even at the high levels of species richness that are typically found in soil, and that would make random systems very unstable. Also, the stability of our soil food webs is well-approximated by the cascade model. This result suggests that stability could emerge from the hierarchical structure of the functional organization of the web. Our study shows that under the assumption of equilibrium and small perturbations, theoretical soil food webs possess a topological structure that allows them to be complex yet more locally stable than their random counterpart. In particular, results strongly support the general hypothesis that the stability of rich and complex soil food webs is mostly driven by correlations in interaction strength and the organization of the soil food web into functional groups. The implication is that in real-world food web, any force disrupting the functional structure and distribution pattern of interaction strengths (i.e., energy fluxes) of the soil food webs will destabilize the dynamics of the system, leading to species extinction and major changes in the relative abundances of species.

5.
Sci Data ; 7(1): 6, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913312

RESUMO

The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology.


Assuntos
Biota , Animais , Biodiversidade , Ecologia , Plantas
6.
Zootaxa ; 4666(1): zootaxa.4666.1.1, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31716649

RESUMO

This checklist of the oribatid fauna of Canada and Alaska (excluding Astigmata) includes 580 identified species in 249 genera and 96 families. The known fauna of Canada includes 556 identified species in 247 genera, and that of Alaska includes 182 species in 95 genera; 39 of the 42 oribatid superfamilies are represented. We further list ~ 300 species that are currently unidentified, and possibly undescribed. In addition, we list 42 genera that are represented only by unidentified and probably undescribed species. For each species we give combinations and synonymies, specific locations in Alaska and the Provinces and Territories of Canada, habitats, and biogeography.                There are 182 identified species known for Alaska, 152 for Yukon, 122 for Northwest Territories, 58 for Nunavut; 210 for British Columbia, 213 for Alberta, 15 for Saskatchewan, 84 for Manitoba, 167 for Ontario, 210 for Québec, 110 for Nova Scotia, 77 for New Brunswick, 84 for Newfoundland and 6 for Prince Edward Island. The known fauna of Canada is smaller than that of Austria, and is approximately equivalent to that of the Czech Republic. As these countries are much smaller in size than Canada and less ecologically diverse, we consider the Canadian and Alaskan fauna are at most 25% known. The paucity of these data reflects the absence of taxonomic and faunistic studies on Oribatida in State, Provinces or Territories, and especially in the Canadian and Alaskan National Park systems and the hundreds of Provincial Parks.                Despite the almost 90% increase in described species since the catalogue of Marshall et al. (1987), there is a need for focussed, coordinated research on Oribatida in the natural regions throughout Canada and Alaska, and for monographs on families and genera with large numbers of undescribed species, such as Brachychthoniidae, Damaeidae, Cepheidae, Liacaridae, Oppiidae, Suctobelbidae, Hydrozetidae, Phenopelopidae, Scheloribatidae, Haplozetidae and Galumnidae.


Assuntos
Ácaros , Alaska , Animais , Canadá
7.
Zookeys ; (819): 77-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713436

RESUMO

Summaries of taxonomic knowledge are provided for all acarine groups in Canada, accompanied by references to relevant publications, changes in classification at the family level since 1979, and notes on biology relevant to estimating their diversity. Nearly 3000 described species from 269 families are recorded in the country, representing a 56% increase from the 1917 species reported by Lindquist et al. (1979). An additional 42 families are known from Canada only from material identified to family- or genus-level. Of the total 311 families known in Canada, 69 are newly recorded since 1979, excluding apparent new records due solely to classification changes. This substantial progress is most evident in Oribatida and Hydrachnidia, for which many regional checklists and family-level revisions have been published. Except for recent taxonomic leaps in a few other groups, particularly of symbiotic mites (Astigmata: feather mites; Mesostigmata: Rhinonyssidae), knowledge remains limited for most other taxa, for which most species records are unpublished and may require verification. Taxonomic revisions are greatly needed for a large majority of families in Canada. Based in part on species recorded in adjacent areas of the USA and on hosts known to be present here, we conservatively estimate that nearly 10,000 species of mites occur in Canada, but the actual number could be 15,000 or more. This means that at least 70% of Canada's mite fauna is yet unrecorded. Much work also remains to match existing molecular data with species names, as less than 10% of the ~7500 Barcode Index Numbers for Canadian mites in the Barcode of Life Database are associated with named species. Understudied hosts and terrestrial and aquatic habitats require investigation across Canada to uncover new species and to clarify geographic and ecological distributions of known species.

8.
Ecology ; 99(5): 1164-1172, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603197

RESUMO

There is a need to find generalizable mechanisms supporting ecological resilience, resistance, and recovery. One hypothesized mechanism is landscape connectivity, a habitat configuration that allows movement of biotic and abiotic resources between local patches. Whether connectivity increases all or only one of resistance, resilience, and recovery has not been teased apart, however, and has been difficult to test at large scales and for complex trophic webs. Natural microcosms offer a complex system that can be manipulated to test questions at a landscape-scale relative to the community of study. Here, we test the role of connectivity in altering resistance, resilience, and recovery to a gradient of heating disturbance in moss microcosms. To test across trophic levels, we focused on community composition as our metric of response and applied three connectivity treatments - isolation, connected to an equally disturbed patch, and connected to an undisturbed patch. We found that connectivity between equally disturbed patches boosted resistance of communities to disturbance. Additionally, recovery was linear and rapid in communities connected to undisturbed landscapes, hump shaped when connected to equally disturbed landscapes, and linear but slow in isolated communities. We did not find thresholds on the disturbance gradient at which disturbed communities exhibited zero or increasing dissimilarity to controls through time, so were unable to draw conclusions on the role of connectivity in ecological resilience. Ultimately, isolated communities exhibited increasingly variable composition and slow recovery patterns even in control communities when compared with connected treatments.


Assuntos
Briófitas , Ecossistema
9.
New Phytol ; 217(1): 16-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076547

RESUMO

Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.


Assuntos
Genoma de Planta/genética , Genômica , Modelos Biológicos , Sphagnopsida/genética , Adaptação Fisiológica , Evolução Biológica , Ecologia , Filogenia , Análise de Sequência de DNA , Sphagnopsida/citologia , Sphagnopsida/fisiologia
10.
Pedobiologia (Jena) ; 63: 1-7, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29129942

RESUMO

The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia - Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia.The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise.

11.
Microb Ecol ; 73(3): 521-531, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27744477

RESUMO

Peatlands play an important role in global climate change through sequestration of atmospheric CO2. Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO2 concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.


Assuntos
Ascomicetos/classificação , Mudança Climática , Microbiota/genética , Mortierella/classificação , Micorrizas/classificação , Sphagnopsida/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Biodiversidade , Clima , DNA Fúngico/genética , Mortierella/genética , Mortierella/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Temperatura , Áreas Alagadas
12.
PLoS One ; 11(7): e0159043, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391306

RESUMO

Metabarcoding has become an important tool in the discovery of biodiversity, including fungi, which are the second most speciose group of eukaryotes, with diverse and important ecological roles in terrestrial ecosystems. We have designed and tested new PCR primers that target the D1 variable region of nuclear large subunit (LSU) ribosomal DNA; one set that targets the phylum Ascomycota and another that recovers all other fungal phyla. The primers yield amplicons compatible with the Illumina MiSeq platform, which is cost-effective and has a lower error rate than other high throughput sequencing platforms. The new primer set LSU200A-F/LSU476A-R (Ascomycota) yielded 95-98% of reads of target taxa from environmental samples, and primers LSU200-F/LSU481-R (all other fungi) yielded 72-80% of target reads. Both primer sets have fairly low rates of data loss, and together they cover a wide variety of fungal taxa. We compared our results with these primers by amplifying and sequencing a subset of samples using the previously described ITS3_KYO2/ITS4_KYO3 primers, which amplify the internal transcribed spacer 2 (ITS2) of Ascomycota and Basidiomycota. With approximately equivalent read depth, our LSU primers recovered a greater number and phylogenetic diversity of sequences than the ITS2 primers. For instance, ITS3_KYO2/ITS4_KYO3 primers failed to pick up any members of Eurotiales, Mytilinidiales, Pezizales, Saccharomycetales, or Venturiales within Ascomycota, or members of Exobasidiomycetes, Microbotryomycetes, Pucciniomycetes, or Tremellomycetes within Basidiomycota, which were retrieved in good numbers from the same samples by our LSU primers. Among the OTUs recovered using the LSU primers were 127 genera and 28 species that were not obtained using the ITS2 primers, although the ITS2 primers recovered 10 unique genera and 16 species that were not obtained using either of the LSU primers These features identify the new primer sets developed in this study as useful complements to other universal primers for the study of fungal diversity and community composition.


Assuntos
Ascomicetos/genética , Basidiomycota/genética , Código de Barras de DNA Taxonômico/métodos , Primers do DNA/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Reação em Cadeia da Polimerase/métodos , Especificidade da Espécie
13.
Q Rev Biol ; 90(2): 147-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26285353

RESUMO

Broadening contingents of ecologists and environmental scientists have recently begun to promote ecological resilience both as a conceptual framework and as a practical goal. As some critics have noted, this growing interest has brought with it a multiplication of notions of ecological resilience. This paper reviews how and why the notion of ecological resilience has been adopted, used, and defended in ecology since its introduction by C. S. Holling in 1973. We highlight the many faces of ecological resilience, but unlike other reviewers who see these as disunified and confused, we interpret ecological resilience as an evolving, multidimensional, theoretical concept unified by its role in guiding practical response to ecological and environmental challenges. This perspective informs a review of some of the factors often recognized as favoring resilience (structural and response diversity, functional redundancy, modularity, and spatial heterogeneity); we show how the roles and relationships of these factors can be clarified by considering them in the theoretical framework of Complex Adaptive Systems (CASs).


Assuntos
Adaptação Fisiológica , Animais , Evolução Biológica , Ecologia
14.
Glob Chang Biol ; 21(1): 388-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24957384

RESUMO

The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Modelos Biológicos , Sphagnopsida/fisiologia , Análise de Variância , Dióxido de Carbono/metabolismo , Água Subterrânea , Concentração de Íons de Hidrogênio , Especificidade da Espécie , Temperatura
15.
Ecology ; 94(3): 627-39, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23687889

RESUMO

Ecological communities show extremely complex patterns of variation in space, and quantifying the relative importance of spatial and environmental factors underpinning patterns of species distributions is one of the main goals of community ecology. Although we have accumulated good knowledge about the processes driving species distributions within metacommunities, we have few insights about whether (and how) environmental and spatial features can actually generate consistent species distributional patterns across multiple metacommunities. In this paper we applied the elements of metacommunity structure (EMS) framework to identify and classify metacommunities according to multiple but discrete patterns of species distributions. Given that each pattern has unique underlying structuring mechanisms, exploring and comparing such patterns across multiple metacommunities spanning large geographical areas provides a way to test the existence of general principles underlying species distributions within metacommunities. In this study, we applied the EMS framework into a data set containing about 9000 lakes distributed across 85 fish metacommunities across Ontario, Canada, and estimated the relative importance of local and spatial factors in explaining their distributional patterns. Nested and Clementsian gradients were the patterns that fitted most metacommunities; nested metacommunities were distributed throughout the province, while Clementsian gradient metacommunities were concentrated in the southeastern region. Sixty-five percent of nested metacommunities were located in low-energy watersheds (i.e., colder climate and shorter growing season), whereas metacommunities representing Clementsian gradients were present in high-energy watersheds (i.e., relatively warmer climate and longer growing season). Taken together, our results reveal that the environmental and spatial properties in which metacommunities are embedded are at least partially responsible for their species distributional patterns.


Assuntos
Demografia , Ecossistema , Peixes/fisiologia , Lagos , Animais , Clima , Peixes/classificação , Modelos Biológicos , Ontário
16.
Glob Chang Biol ; 19(7): 2022-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23505142

RESUMO

Ecosystems in the far north, including arctic and boreal biomes, are a globally significant pool of carbon (C). Global change is proposed to influence both C uptake and release in these ecosystems, thereby potentially affecting whether they act as C sources or sinks. Bryophytes (i.e., mosses) serve a variety of key functions in these systems, including their association with nitrogen (N2 )-fixing cyanobacteria, as thermal insulators of the soil, and producers of recalcitrant litter, which have implications for both net primary productivity (NPP) and heterotrophic respiration. While ground-cover bryophytes typically make up a small proportion of the total biomass in northern systems, their combined physical structure and N2 -fixing capabilities facilitate a disproportionally large impact on key processes that control ecosystem C and N cycles. As such, the response of bryophyte-cyanobacteria associations to global change may influence whether and how ecosystem C balances are influenced by global change. Here, we review what is known about their occurrence and N2 -fixing activity, and how bryophyte systems will respond to several key global change factors. We explore the implications these responses may have in determining how global change influences C balances in high northern latitudes.


Assuntos
Briófitas/fisiologia , Carbono , Mudança Climática , Cianobactérias/fisiologia , Ecossistema , Árvores/crescimento & desenvolvimento , Regiões Árticas , Briófitas/metabolismo , Clima Frio , Cianobactérias/metabolismo , Fixação de Nitrogênio
17.
Am J Bot ; 98(3): 503-16, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21613142

RESUMO

Habitat transformation is one of the leading causes of changes in biodiversity and the breakdown of ecosystem function and services. The impacts of habitat transformation on biodiversity are complex and can be difficult to test and demonstrate. Network approaches to biodiversity science have provided a powerful set of tools and models that are beginning to present new insight into the structural and functional effects of habitat transformation on complex ecological systems. We propose a framework for studying the ways in which habitat loss and fragmentation jointly affect biodiversity by altering both habitat and ecological interaction networks. That is, the explicit study of "networks of networks" is required to understand the impacts of habitat change on biodiversity. We conduct a broad review of network methods and results, with the aim of revealing the common approaches used by landscape ecology and community ecology. We find that while a lot is known about the consequences of habitat transformation for habitat network topology and for the structure and function of simple antagonistic and mutualistic interaction networks, few studies have evaluated the consequences for large interaction networks with complex and spatially explicit architectures. Moreover, almost no studies have been focused on the continuous feedback between the spatial structure and dynamics of the habitat network and the structure and dynamics of the interaction networks inhabiting the habitat network. We conclude that theory and experiments that tackle the ecology of networks of networks are needed to provide a deeper understanding of biodiversity change in fragmented landscapes.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cadeia Alimentar , Modelos Biológicos
18.
Ecol Lett ; 13(5): 543-52, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20236160

RESUMO

The spatial insurance hypothesis indicates that connectivity is an important attribute of natural ecosystems that sustains both biodiversity and ecosystem function. We tested the hypothesis by measuring the impact of manipulating connectivity in experimental metacommunties of a natural and diverse microecosystem. Isolation led to the extinction of large-bodied apex predators, subsequently followed by increases in prey species abundance. This trophic cascade was associated with significantly altered carbon and nitrogen fluxes in fragmented treatments. The ecosystem impacts were characteristic of a function debt because they persisted for several generations after the initial loss of connectivity. Local extinctions and disruption of ecosystem processes were mitigated, and even reversed, by the presence of corridors in the connected metacommunities, although these beneficial effects were unexpectedly delayed. We hypothesized that corridors maintained grazer movement between fragments, which enhanced microbial activity, and decomposition in comparison to isolated fragments. Our results indicate that knowledge of habitat connectivity and spatial processes is essential to understand the magnitude and timing of ecosystem perturbation in fragmented landscapes.


Assuntos
Ecossistema , Extinção Biológica , Animais , Artrópodes/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Modelos Teóricos , Nitrogênio/metabolismo
19.
Oecologia ; 160(4): 817-25, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19412624

RESUMO

Understanding the conditions under which species traits, species-environment relationships, and the spatial structure of the landscape interact to shape local communities requires quantifying the relative contributions of space and the environment on community composition. Using analogous sampling of arboreal and terrestrial oribatid mite communities across a large spatial scale in a temperate rainforest, we quantified the variation in oribatid mite community structure relating to environmental and spatial factors, and tested whether terrestrial and arboreal communities demonstrated a difference in their patterns of community composition based on the assumption of differences in dispersal potential. The expectation that terrestrial oribatid mite communities are spatially structured while arboreal communities are environmentally structured was supported by our analyses at the level of variation in beta diversity, but not by assessing beta diversity itself. We found that terrestrial oribatid mite communities with active, cursorial dispersal demonstrate spatial constraint consistent with reduced long-distance dispersal opportunities and high environmental dissimilarity among sites. Arboreal communities, which potentially disperse long distances via passive aerial vectors, show a spatial signature associated with patterns in beta diversity and a correlation with environmental dissimilarities among sites. In the arboreal community, moisture content of the substrate, total tree height, and average sampled branch height were significant factors explaining beta diversity patterns. For ground-dwelling species, predator abundance and soil type were important local determinants of community variability. Both communities showed clear spatial structuring, suggesting that dispersal limitation continues to influence community composition across multiple forest watershed locations. Our results provide evidence of dispersal-maintained diversity patterns in response to local environmental factors in arboreal and terrestrial communities. The relative importance of stochastic dispersal assembly may be dependent on strong deterministic effects associated with micro-site and macro-site environmental variation, particularly across large spatial scales.


Assuntos
Biodiversidade , Demografia , Ecossistema , Meio Ambiente , Ácaros/fisiologia , Animais , Colúmbia Britânica , Modelos Biológicos , Especificidade da Espécie , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA