Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 30(11): 866-875, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28777044

RESUMO

The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Citrus/genética , Citrus/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Xylella/metabolismo , Regulação Bacteriana da Expressão Gênica , Plantas Geneticamente Modificadas , Transformação Genética , Xylella/genética
2.
Math Biosci ; 239(1): 106-16, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659411

RESUMO

Pseudomonas syringae is a gram-negative bacterium which lives on leaf surfaces. Its growth has been described using epifluorescence microscopy and image analysis; it was found to be growing in aggregates of a wide range of sizes. We develop a stochastic model to describe aggregate distribution and determine the mechanisms generating experimental observations. We found that a logistic birth-death model with migration (time-homogeneous Markov process) provides the best description of the observed data. We discuss how to analyze the joint distribution of the numbers of aggregates of different sizes at a given time and explore how to account for new aggregates being created, that is, the joint distribution of the family size statistics conditional on the total number of aggregates. We compute the first two moments. Through simulations we examine how the model's parameters affect the aggregate size distribution and successfully explain the quantitative experimental data available. Aggregation formation is thought to be the first step towards pathogenic behavior of this bacterium; understanding aggregate size distribution would prove useful to understand the switch from epiphytic to pathogenic behavior.


Assuntos
Modelos Logísticos , Modelos Biológicos , Folhas de Planta/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , Simulação por Computador , Cadeias de Markov , Dinâmica Populacional
3.
Phytopathology ; 101(1): 77-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20822432

RESUMO

To better understand the processes contributing to symptoms and resistance to Pierce's disease of grape, we examined the movement and multiplication of a green fluorescent protein-marked strain of Xylella fastidiosa in the stems and petioles of Cabernet Sauvignon, Chenin Blanc, Roucaneuf, and Tampa grape cultivars that differ in their susceptibility to this disease. X. fastidiosa achieved much lower population sizes and colonized fewer xylem vessels in the stem of resistant cultivars compared with more susceptible cultivars. In contrast, X. fastidiosa achieved similarly high population sizes and colonized a similar proportion of the vessels in petioles of susceptible and resistant cultivars, suggesting that, compared with the stem, X. fastidiosa is relatively unrestricted in its movement and growth within the petiole. There was not a direct relationship between the population size of X. fastidiosa in the stem and the proportion of vessels colonized; a much higher population size of the pathogen was observed in susceptible cultivars than expected based on the proportion of vessels colonized. The high population sizes of X. fastidiosa in stems of susceptible genotypes were associated with both a high number of infected vessels and a much higher extent of colonization of those vessels that become infested than in more resistant cultivars. The formation of large cellular aggregates in vessels is not required for X. fastidiosa to move laterally in the stem to adjacent vessels because most vessels harbored only small assemblages, especially in resistant cultivars such as Roucaneuf, in which some intervessel movement was detected. Resistance to Pierce's disease is apparently not due to inhibitory compounds that circulate in the xylem because they might be expected to operate similarly in all tissues.


Assuntos
Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Predisposição Genética para Doença , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Caules de Planta/microbiologia
4.
Appl Environ Microbiol ; 71(9): 5484-93, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16151141

RESUMO

The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% +/- 8.2%) than that in monospecific aggregates of these two strains (1.6% +/- 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions on leaf surfaces and the implications for biological control of pathogenic and other deleterious microorganisms is discussed.


Assuntos
Aderência Bacteriana , Fabaceae/microbiologia , Pantoea/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas syringae/crescimento & desenvolvimento , Ecossistema , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Pantoea/genética , Pantoea/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo
5.
Microb Ecol ; 49(3): 343-52, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16003469

RESUMO

The fate of immigrant bacterial cells on leaves under stressful conditions was determined as a function of the anatomical features and the local spatial density of resident cells at their landing site. Pantoea agglomerans 299R was established on bean leaves and the survival of immigrant cells of Pseudomonas fluorescens A506 and Pseudomonas syringae B728a, as well as P. agglomerans itself, was determined by epifluorescence microscopy following subsequent exposure of plants to desiccation stress. Resident and immigrant bacterial strains constitutively expressed the cyan and the green fluorescent protein, respectively, and the viability of individual cells was assessed directly on leaf surfaces following propidium iodide staining. Although only a small fraction of the immigrant cells landed on established bacterial aggregates, their fate was usually strongly influenced by the presence of indigenous bacteria at the site at which they landed. Immigrants of P. agglomerans 299R or P. fluorescens A506 that arrived as solitary cells had about double the probability of survival when landing on aggregates formed by P. agglomerans 299R than when landing on uncolonized areas of the leaf surface. In contrast, the survival of P. syringae B728a was similar irrespective of whether it landed on colonized or uncolonized parts of a leaf. The nature of plant anatomical features at which immigrant bacteria landed also strongly influenced the fate of immigrant bacteria. The fraction of immigrant cells of each species tested that landed on veins, glandular trichomes, or epidermal cells altered by P. agglomerans that died was always less than when they landed on normal epidermal cells or at the base of hooked trichomes. Depending on the process by which immigrants arrive at a leaf, only a small fraction of cells may be deposited on existing bacterial aggregates. Although uncolonized sites differed greatly in their ability to influence the survival of immigrant cells, the fate of an immigrant bacterium will depend on the nature of the leaf structure on which it is deposited, and apparently indirectly on the amount of nutrients and water available at that site to support the development of bacterial aggregates.


Assuntos
Pantoea/crescimento & desenvolvimento , Folhas de Planta , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas syringae/crescimento & desenvolvimento , Micronutrientes/metabolismo , Dinâmica Populacional , Sobrevida , Água
6.
Appl Environ Microbiol ; 70(1): 346-55, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14711662

RESUMO

Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 10(4) cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 10(3) cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed.


Assuntos
Aderência Bacteriana , Phaseolus/microbiologia , Folhas de Planta/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Doenças das Plantas/microbiologia , Pseudomonas syringae/isolamento & purificação
7.
Proc Natl Acad Sci U S A ; 100(26): 15977-82, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14665692

RESUMO

The survival of individual Pseudomonas syringae cells was determined on bean leaf surfaces maintained under humid conditions or periodically exposed to desiccation stress. Cells of P. syringae strain B728a harboring a GFP marker gene were visualized by epifluorescence microscopy, either directly in situ or after recovery from leaves, and dead cells were identified as those that were stained with propidium iodide in such populations. Under moist, conducive conditions on plants, the proportion of total live cells was always high, irrespective of their aggregated state. In contrast, the proportion of the total cells that remained alive on leaves that were periodically exposed to desiccation stress decreased through time and was only approximately 15% after 5 days. However, the fraction of cells in large aggregates that were alive on such plants in both condition was much higher than more solitary cells. Immediately after inoculation, cells were randomly distributed over the leaf surface and no aggregates were observed. However, a very aggregated pattern of colonization was apparent within 7 days, and >90% of the living cells were located in aggregates of 100 cells or more. Our results strongly suggest that, although conducive conditions favor aggregate formation, such cells are much more capable of tolerating environmental stresses, and the preferential survival of cells in aggregates promotes a highly clustered spatial distribution of bacteria on leaf surfaces.


Assuntos
Folhas de Planta/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , Divisão Celular , Sobrevivência Celular , Clonagem Molecular , Escherichia coli/genética , Fabaceae/microbiologia , Marcadores Genéticos , Proteínas de Fluorescência Verde , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Plasmídeos/isolamento & purificação , Pseudomonas syringae/citologia , Pseudomonas syringae/genética , Salmonella typhimurium/genética
8.
Phytopathology ; 93(10): 1209-16, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18944318

RESUMO

ABSTRACT The length and volume of cells of the plant-pathogenic bacterium Pseudomonas syringae strain B728a were measured in vitro and with time after inoculation on bean leaf surfaces to assess both the effect of nutrient availability on the cell size of P. syringae and, by inference, the variability in nutrient availability in the leaf surface habitat. Cells of P. syringae harboring a green fluorescent protein marker gene were visualized by epifluorescence microscopy after recovery from leaves or culture and their size was estimated by analysis of captured digital images. The average cell length of bacteria grown on leaves was significantly smaller than that of cultured cells, and approached that of cells starved in phosphate buffer for 24 h. The average length of cells originally grown on King's medium B decreased from approximately 2.5 to approximately 1.2 mum by 7 days after inoculation on plants. Some decrease in cell size occurred during growth of cells on leaves and continued for up to 13 days after cell multiplication ceased. Although cultured cells exhibited a normal size distribution, the size of cells recovered from bean plants at various times after inoculation was strongly right-hand skewed and was described by a log-normal distribution. The skewness of the size distribution tended to increase with time after inoculation. The reduced cell size of P. syringae B728a on plants was readily reversible when recovered cells were grown in culture. Direct in situ measurements of cell sizes on leaves confirmed that most cells of P. syringae respond to the leaf environment by reducing their size. The spatial heterogeneity of cell sizes observed on leaves suggest that nutrient availability is quite variable on the leaf surface environment.

9.
Appl Environ Microbiol ; 68(5): 2509-18, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11976128

RESUMO

Low pollutant substrate bioavailability limits hydrocarbon biodegradation in soils. Bacterially produced surface-active compounds, such as rhamnolipid biosurfactant and the PA bioemulsifying protein produced by Pseudomonas aeruginosa, can improve bioavailability and biodegradation in liquid culture, but their production and roles in soils are unknown. In this study, we asked if the genes for surface-active compounds are expressed in unsaturated porous media contaminated with hexadecane. Furthermore, if expression does occur, is biodegradation enhanced? To detect expression of genes for surface-active compounds, we fused the gfp reporter gene either to the promoter region of pra, which encodes for the emulsifying PA protein, or to the promoter of the transcriptional activator rhlR. We assessed green fluorescent protein (GFP) production conferred by these gene fusions in P. aeruginosa PG201. GFP was produced in sand culture, indicating that the rhlR and pra genes are both transcribed in unsaturated porous media. Confocal laser scanning microscopy of liquid drops revealed that gfp expression was localized at the hexadecane-water interface. Wild-type PG201 and its mutants that are deficient in either PA protein, rhamnolipid synthesis, or both were studied to determine if the genetic potential to make surface-active compounds confers an advantage to P. aeruginosa biodegrading hexadecane in sand. Hexadecane depletion rates and carbon utilization efficiency in sand culture were the same for wild-type and mutant strains, i.e., whether PG201 was proficient or deficient in surfactant or emulsifier production. Environmental scanning electron microscopy revealed that colonization of sand grains was sparse, with cells in small monolayer clusters instead of multilayered biofilms. Our findings suggest that P. aeruginosa likely produces surface-active compounds in sand culture. However, the ability to produce surface-active compounds did not enhance biodegradation in sand culture because well-distributed cells and well-distributed hexadecane favored direct contact to hexadecane for most cells. In contrast, surface-active compounds enable bacteria in liquid culture to adhere to the hexadecane-water interface when they otherwise would not, and thus production of surface-active compounds is an advantage for hexadecane biodegradation in well-dispersed liquid systems.


Assuntos
Alcanos/metabolismo , Proteínas Luminescentes/biossíntese , Pseudomonas aeruginosa/metabolismo , Microbiologia do Solo , Aldose-Cetose Isomerases/genética , Sequência de Bases , Biodegradação Ambiental , Técnicas de Cultura de Células , DNA Bacteriano/análise , Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Dióxido de Silício
10.
J Bacteriol ; 183(23): 6752-62, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11698362

RESUMO

We have formulated a numerical model that simulates the accumulation of green fluorescent protein (GFP) in bacterial cells from a generic promoter-gfp fusion. The model takes into account the activity of the promoter, the time it takes GFP to mature into its fluorescent form, the susceptibility of GFP to proteolytic degradation, and the growth rate of the bacteria. From the model, we derived a simple formula with which promoter activity can be inferred easily and quantitatively from actual measurements of GFP fluorescence in growing bacterial cultures. To test the usefulness of the formula, we determined the activity of the LacI-repressible promoter P(A1/O4/O3) in response to increasing concentrations of the inducer IPTG (isopropyl-beta-D-thiogalactopyranoside) and were able to predict cooperativity between the LacI repressors on each of the two operator sites within P(A1/O4/O3). Aided by the model, we also quantified the proteolytic degradation of GFP[AAV], GFP[ASV], and GFP[LVA], which are popular variants of GFP with reduced stability in bacteria. Best described by Michaelis-Menten kinetics, the rate at which these variants were degraded was a function of the activity of the promoter that drives their synthesis: a weak promoter yielded proportionally less GFP fluorescence than a strong one. The degree of disproportionality is species dependent: the effect was more pronounced in Erwinia herbicola than in Escherichia coli. This phenomenon has important implications for the interpretation of fluorescence from bacterial reporters based on these GFP variants. The model furthermore predicted a significant effect of growth rate on the GFP content of individual bacteria, which if not accounted for might lead to misinterpretation of GFP data. In practice, our model will be helpful for prior testing of different combinations of promoter-gfp fusions that best fit the application of a particular bacterial reporter strain, and also for the interpretation of actual GFP fluorescence data that are obtained with that reporter.


Assuntos
Bactérias/metabolismo , Proteínas Luminescentes/genética , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fluorescência , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Modelos Biológicos
11.
Proc Natl Acad Sci U S A ; 98(6): 3446-53, 2001 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11248098

RESUMO

We report here the construction, characterization, and application of a bacterial bioreporter for fructose and sucrose that was designed to monitor the availability of these sugars to microbial colonizers of the phyllosphere. Plasmid pP(fruB)-gfp[AAV] carries the Escherichia coli fruB promoter upstream from the gfp[AAV] allele that codes for an unstable variant of green fluorescent protein (GFP). In Erwinia herbicola, this plasmid brings about the accumulation of GFP fluorescence in response to both fructose and sucrose. Cells of E. herbicola (pP(fruB)-gfp[AAV]) were sprayed onto bean plants, recovered from leaves at various time intervals after inoculation, and analyzed individually for GFP content by quantitative analysis of digital microscope images. We observed a positive correlation between single-cell GFP accumulation and ribosomal content as determined by fluorescence in situ hybridization, indicating that foliar growth of E. herbicola occurred at the expense of fructose and/or sucrose. One hour after inoculation, nearly all bioreporter cells appeared to be actively engaged in fructose consumption. This fraction dropped to approximately 11% after 7 h and to approximately 1% a day after inoculation. This pattern suggests a highly heterogeneous availability of fructose to individual E. herbicola cells as they colonize the phyllosphere. We estimated that individual cells were exposed to local initial fructose abundances ranging from less than 0.15 pg fructose to more than 4.6 pg.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Frutose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Meios de Cultura , Erwinia/metabolismo , Fabaceae/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Folhas de Planta/metabolismo , Proteínas Quinases
12.
Proc Natl Acad Sci U S A ; 98(6): 3454-9, 2001 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11248099

RESUMO

We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC.


Assuntos
Carboxiliases/genética , Erwinia/enzimologia , Fabaceae/metabolismo , Genes Bacterianos , Ácidos Indolacéticos/metabolismo , Transcrição Gênica , Erwinia/genética , Folhas de Planta , Proteínas Recombinantes de Fusão/genética
13.
Appl Environ Microbiol ; 67(3): 1308-17, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11229926

RESUMO

A set of three sucrose-regulated transcriptional fusions was constructed. Fusions p61RYTIR, p61RYlac, and p61RYice contain the scrR sucrose repressor gene and the promoterless gfp, lacZ, and inaZ reporter genes, respectively, fused to the scrY promoter from Salmonella enterica serovar Typhimurium. Cells of Erwinia herbicola containing these fusions are induced only in media amended with sucrose, fructose, or sorbose. While a large variation in sucrose-dependent reporter gene activity was observed in cells harboring all gene fusions, fusions to the inaZ reporter gene yielded a much wider range of activity and were responsive to lower levels of sucrose than either lacZ or gfp. The lacZ reporter gene was found to be more efficient than gfp, requiring approximately 300-fold fewer cells for a detectable response over all concentrations of sucrose. Similarly, inaZ was found to be more efficient than lacZ, requiring 30-fold fewer cells at 1.45 microM sucrose and 6,100-fold fewer cells at 29 mM sucrose for a quantifiable response. The fluorescence of individual cells containing p61RYTIR was quantified following epifluorescence microscopy in order to relate the fluorescence exhibited by populations of cells in batch cultures with that of individual cells in such cultures. While the mean fluorescence intensity of a population of individual cells increased with increasing concentrations of sucrose, a wide range of fluorescence intensity was seen among individual cells. For most cultures the distribution of fluorescence intensity among individual cells was log-normally distributed, but cells grown in intermediate concentrations of sucrose exhibited two distinct populations of cells, one having relatively low fluorescence and another with much higher fluorescence. When cells were inoculated onto bean leaves, whole-cell ice nucleation and gfp-based biological sensors for sucrose each indicated that the average concentration of sucrose on moist leaf surfaces was about 20 microM. Importantly, the variation in green fluorescent protein fluorescence of biosensor cells on leaves suggested that large spatial variations in sugar availability occur on leaves.


Assuntos
Proteínas de Bactérias , Técnicas Biossensoriais , Genes Reporter , Sacarose/metabolismo , Erwinia/genética , Erwinia/metabolismo , Fabaceae/microbiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde , Óperon Lac/genética , Óperon Lac/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Plantas Medicinais , Plasmídeos/genética , Porinas/genética , Porinas/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transcrição Gênica
14.
Phytopathology ; 91(4): 415-22, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18943855

RESUMO

ABSTRACT The external and internal colonization of potato and Arabidopsis roots by the biocontrol strain Rhizobium etli G12 containing a plasmidborne trp promoter green fluorescent protein transcriptional fusion, pGT-trp, was studied in the presence and absence of the root-knot nematode Meloidogyne incognita. Plant colonization behavior and biocontrol potential of the marked strain G12(pGT-trp) was not altered compared with the parental strain. Plasmid pGT-trp was stable for more than 80 generations without selection and conferred sufficient fluorescence to detect single bacterial cells in planta. Although bacteria were found over the entire rhizoplane, they preferentially colonized root tips, the emerging lateral roots, and galled tissue caused by Meloidogyne infestation. Internal colonization of potato roots was mainly observed in epidermal cells, especially root hairs. G12(pGT-trp) colonization was also observed in inner Arabidopsis root tissues in areas of vascularization. In the presence of M. incognita, G12(pGT-trp) colonized the interior of nematode galls in high numbers. In some cases, bacterial colonization even extended from the galled tissue into adjacent root tissue. The internally colonized sites in roots were often discontinuous. Fluorescence microscopy of gfp-tagged rhizobacteria was a sensitive and a rapid technique to study external and internal colonization of plant roots by bacteria interacting with nematodes.

15.
Mol Plant Microbe Interact ; 13(11): 1243-50, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11059491

RESUMO

A new set of broad-host-range promoter-probe vectors has been constructed. One subset contains the pVS1 and p15a replicons and confers resistance to either gentamicin or kanamycin. The other set contains the broad-host-range replicon from pBBR1 and confers resistance to kanamycin, tetracycline, ampicillin, or spectinomycin/streptomycin. Both plasmid sets are highly stable and are maintained without selection for more than 30 generations in several bacterial taxa. Each plasmid contains a promoter-probe cassette that consists of a multicloning site, containing several unique restriction sites, and gfp or inaZ as a reporter gene. The cassette is bound by transcriptional terminators to permit the insertion of strong promoters and to insulate the cassette from external transcription enabling the detection of weak or moderate promoters. The vector suite was augmented with derivatives of the kanamycin-resistant gfp promoter-probe plasmids that encode Gfp variants with different half-life times.


Assuntos
Proteínas da Membrana Bacteriana Externa , Erwinia/genética , Escherichia coli/genética , Genes Reporter , Vetores Genéticos , Pseudomonas/genética , Proteínas de Bactérias , Sequência de Bases , Resistência Microbiana a Medicamentos/genética , Proteínas de Fluorescência Verde , Meia-Vida , Proteínas Luminescentes , Dados de Sequência Molecular , Plasmídeos , Regiões Promotoras Genéticas , Replicon
16.
Appl Environ Microbiol ; 66(1): 369-74, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10618250

RESUMO

The relationship between nutrients leached onto the leaf surface and the colonization of plants by bacteria was studied by measuring both the abundance of simple sugars and the growth of Pseudomonas fluorescens on individual bean leaves. Data obtained in this study indicate that the population size of epiphytic bacteria on plants under environmentally favorable conditions is limited by the abundance of carbon sources on the leaf surface. Sugars were depleted during the course of bacterial colonization of the leaf surface. However, about 20% of readily utilizable sugar, such as glucose, present initially remained on fully colonized leaves. The amounts of sugars on a population of apparently identical individual bean leaves before and after microbial colonization exhibited a similar right-hand-skewed distribution and varied by about 25-fold from leaf to leaf. Total bacterial population sizes on inoculated leaves under conditions favorable for bacterial growth also varied by about 29-fold and exhibited a right-hand-skewed distribution. The amounts of sugars on leaves of different plant species were directly correlated with the maximum bacterial population sizes that could be attained on those species. The capacity of bacteria to deplete leaf surface sugars varied greatly among plant species. Plants capable of supporting high bacterial population sizes were proportionally more depleted of leaf surface nutrients than plants with low epiphytic populations. Even in species with a high epiphytic bacterial population, a substantial amount of sugar remained after bacterial colonization. It is hypothesized that residual sugars on colonized leaves may not be physically accessible to the bacteria due to limitations in wettability and/or diffusion of nutrients across the leaf surface.


Assuntos
Carboidratos/análise , Fabaceae/microbiologia , Folhas de Planta/química , Folhas de Planta/microbiologia , Plantas Medicinais , Pseudomonas fluorescens/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Glucose/análise , Pseudomonas fluorescens/metabolismo
17.
Phytopathology ; 89(5): 353-9, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-18944746

RESUMO

ABSTRACT Bacteria associated with plant leaves, or phyllobacteria, probably employ a range of colonization strategies. Steps in these colonization strategies include modification of the leaf habitat, aggregation, ingression, and egression. Considerable evidence indicates that bacteria can modify their environment to enhance their colonization of plants, such as by increasing local nutrient concentrations or by producing a layer of extracellular polysaccharides. This local habitat modification may occur on the surface of leaves, as well as in the leaf interior, and may be enhanced by the formation of bacterial aggregates. The conspicuous presence of bacterial aggregates on leaves and the finding that the behavior of bacteria on plants varies in a density-dependent manner indicate the potential importance of cooperative interactions among phyllobacteria. Such cooperative interactions may occur among both homogeneous and heterogeneous populations, thus influencing the development of microbial communities. While the sites commonly colonized by most phyllobacteria have not been unambiguously identified, there is strong circumstantial evidence that a sizable proportion of cells, particularly of phytopathogenic strains, are localized within "protected sites" on plants. The likelihood that these protected sites are located in the interior of leaves indicates that phytopathogenic bacteria have access to more resources and greater protection from stresses associated with the leaf surface than bacteria that are restricted to the leaf surface. The internal and external leaf-associated populations probably form a continuum due to the processes of ingression and egression. For a specific pathogen, however, the extent of egression that occurs prior to disease induction is likely to influence the success of disease predictions based on external population size, i.e., the number of bacteria in leaf washings. In this review, we illustrate the complexity of the ecology of leaf-associated bacteria and propose a model of leaf colonization that emphasizes the common elements in bacterial colonization strategies, as well as allows for distinct behavior of different phyllobacterial species.

18.
J Bacteriol ; 180(17): 4497-507, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9721288

RESUMO

Two methionine biosynthetic genes in Pseudomonas syringae pv. syringae, metX and metW, were isolated, sequenced, and evaluated for their roles in methionine biosynthesis and bacterial fitness on leaf surfaces. The metXW locus was isolated on a 1.8-kb DNA fragment that was required for both methionine prototrophy and wild-type epiphytic fitness. Sequence analysis identified two consecutive open reading frames (ORFs), and in vitro transcription-translation experiments provided strong evidence that the ORFs encode proteins with the predicted molecular masses of 39 and 22.5 kDa. The predicted amino acid sequence of MetX (39 kDa) showed homology to several known and putative homoserine O-acetyltransferases. This enzyme is the first enzyme in the methionine biosynthetic pathway of fungi, gram-negative bacteria of the genus Leptospira, and several gram-positive bacterial genera. Both metX and metW were required for methionine biosynthesis, and transcription from both genes was not repressed by methionine. MetW (22.5 kDa) did not show significant homology to any known protein, including prokaryotic and eukaryotic methionine biosynthetic enzymes. Several classes of methionine auxotrophs, including metX and metW mutants, exhibit reduced fitness on leaf surfaces, indicating a requirement for methionine prototrophy in wild-type epiphytic fitness. This requirement is enhanced under environmentally stressful conditions, suggesting a role for methionine prototrophy in bacterial stress tolerance.


Assuntos
Acetiltransferases/genética , Proteínas de Bactérias/genética , Metionina/biossíntese , Pseudomonas/genética , Sequência de Aminoácidos , Bacteriófago T7/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano , DNA Recombinante , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
19.
Mol Plant Microbe Interact ; 11(7): 634-42, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9650296

RESUMO

Erwinia herbicola pv. gypsophilae (Ehg), which induces galls on Gypsophila paniculata, harbors two major pathways for indole-3-acetic acid (IAA) synthesis, the indole-3-acetamide (IAM) and indole-3-pyruvate (IPyA) routes, as well as cytokinin biosynthetic genes. Mutants were generated in which the various biosynthetic routes were disrupted separately or jointly in order to assess the contribution of IAA of various origins and cytokinins to pathogenicity and epiphytic fitness. Inactivation of the IAM pathway or cytokinin biosynthesis caused the largest reduction in gall size. Inactivation of the IPyA pathway caused a minor, nonsignificant decrease in pathogenicity. No further reduction in gall size was observed by the simultaneous inactivation of both IAA pathways only or in combination with that of cytokinin production. However, inactivation of the IPyA pathway caused a 14-fold reduction in the population of Ehg on bean plants. Inactivation of the IAM pathway or cytokinin production did not affect epiphytic fitness. While the apparent transcriptional activity of iaaM-inaZ fusion increased slightly in cells of Ehg on bean and gypsophila leaves, compared with that in culture, very high levels of induction were observed in cells injected into gypsophila stems. In contrast, moderate levels of induction of ipdC-inaZ in Ehg were observed on leaves of these plants and in gypsophila stems, when compared with that in culture. These results suggest that the IAM pathway is involved primarily in gall formation and support the main contribution of the IpyA pathway to the epiphytic fitness of this bacterial species.


Assuntos
Erwinia/metabolismo , Erwinia/patogenicidade , Ácidos Indolacéticos/metabolismo , Plantas/microbiologia , Sequência de Bases , Citocininas/biossíntese , Primers do DNA , Erwinia/genética , Cinética , Dados de Sequência Molecular , Doenças das Plantas , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Transcrição Gênica , Virulência
20.
Phytopathology ; 88(11): 1149-57, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18944847

RESUMO

ABSTRACT A relatively high percentage of epiphytic bacteria on pear leaf and fruit surfaces had the ability to produce indole-3-acetic acid (IAA) in culture media supplemented with tryptophan. While over 50% of the strains produced at least small amounts of IAA in culture, about 25% of the strains exhibited high IAA production as evidenced by both colorimetric and high-performance liquid chromatography analysis of culture supernatants. A majority of the strains that produced high amounts of IAA were identified as Erwinia herbicola (Pantoea agglomerans), while some strains of Pseudomonas syringae, Pseudomonas viridiflava, Pseudomonas fluorescens, Pseudomonas putida, and Rahnella aquaticus that produced high amounts of IAA also were found on pear. Fruit russeting was significantly increased in 39 out of 46 trials over an 8-year period in which IAA-producing bacteria were applied to trees compared with control trees. A linear relationship was observed between fruit russet severity and the logarithm of the population size of different IAA-producing bacteria on trees in the 30 days after inoculation, when normalized for the amount of IAA produced by each strain in culture. On average, the severity of fruit russet was only about 77% that on control trees when trees were treated at the time of bloom with Pseudomonas fluorescens strain A506, which does not produce IAA. Both total bacterial populations on pear in the 30-day period following full bloom and fruit russet severity varied greatly from year to year and in different commercial orchards over a 10-year period. There was a strong linear correlation between the logarithm of total bacterial population sizes and fruit russet severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA