RESUMO
Over the past 15 years, the D-statistic, a four-taxon test for organismal admixture (hybridization, or introgression) which incorporates single nucleotide polymorphism data with allelic patterns ABBA and BABA, has seen considerable use. This statistic seeks to discern significant deviation from either a given species tree assumption, or from the balanced incomplete lineage sorting that could otherwise defy this species tree. However, while the D-statistic can successfully discriminate admixture from incomplete lineage sorting, it is not a simple matter to determine the directionality of admixture using only four-leaf tree models. As such, methods have been developed that use 5 leaves to evaluate admixture. Among these, the DFOIL method, which tests allelic patterns on the "symmetric" tree S = (((1,2),(3,4)),5), succeeds in finding admixture direction for many five-taxon examples. However, DFOIL does not make full use of all symmetry, nor can DFOIL function properly when ancient samples are included because of the reliance on singleton patterns (such as BAAAA and ABAAA). Here, we take inspiration from DFOIL to develop a new and completely general family of five-leaf admixture tests, dubbed Δ-statistics, that can either incorporate or exclude the singleton allelic patterns depending on individual taxon and age sampling choices. We describe two new shapes that are also fully testable, namely the "asymmetric" tree A = ((((1,2),3),4),5) and the "quasisymmetric" tree Q = (((1,2),3),(4,5)), which can considerably supplement the "symmetric" S = (((1,2),(3,4)),5) model used by DFOIL. We demonstrate the consistency of Δ-statistics under various simulated scenarios, and provide empirical examples using data from black, brown and polar bears, the latter also including two ancient polar bear samples from previous studies. Recently DFOIL and one of these ancient samples was used to argue for a dominant polar bear â brown bear introgression direction. However, we find, using both this ancient polar bear and our own, that by far the strongest signal using both DFOIL and Δ-statistics on tree S is actually bidirectional gene flow of indistinguishable direction. Further experiments on trees A and Q instead highlight what were likely two phases of admixture: one with stronger brown bear â polar bear introgression in ancient times, and a more recent phase with predominant polar bear â brown bear directionality. Code and documentation available at https://github.com/KalleLeppala/Delta-statistics.
RESUMO
Island systems provide important contexts for studying processes underlying lineage migration, species diversification, and organismal extinction. The Hawaiian endemic mints (Lamiaceae family) are the second largest plant radiation on the isolated Hawaiian Islands. We generated a chromosome-scale reference genome for one Hawaiian species, Stenogyne calaminthoides, and resequenced 45 relatives, representing 34 species, to uncover the continental origins of this group and their subsequent diversification. We further resequenced 109 individuals of two Stenogyne species, and their purported hybrids, found high on the Mauna Kea volcano on the island of Hawai'i. The three distinct Hawaiian genera, Haplostachys, Phyllostegia, and Stenogyne, are nested inside a fourth genus, Stachys. We uncovered four independent polyploidy events within Stachys, including one allopolyploidy event underlying the Hawaiian mints and their direct western North American ancestors. While the Hawaiian taxa may have principally diversified by parapatry and drift in small and fragmented populations, localized admixture may have played an important role early in lineage diversification. Our genomic analyses provide a view into how organisms may have radiated on isolated island chains, settings that provided one of the principal natural laboratories for Darwin's thinking about the evolutionary process.
Assuntos
Mentha , Humanos , Mentha/genética , Filogenia , Havaí , Evolução BiológicaRESUMO
With populations of threatened and endangered species declining worldwide, efforts are being made to generate high quality genomic records of these species before they are lost forever. Here, we demonstrate that data from single Oxford Nanopore Technologies (ONT) MinION flow cells can, even in the absence of highly accurate short DNA-read polishing, produce high quality de novo plant genome assemblies adequate for downstream analyses, such as synteny and ploidy evaluations, paleodemographic analyses, and phylogenomics. This study focuses on three North American ash tree species in the genus Fraxinus (Oleaceae) that were recently added to the International Union for Conservation of Nature (IUCN) Red List as critically endangered. Our results support a hexaploidy event at the base of the Oleaceae as well as a subsequent whole genome duplication shared by Syringa, Osmanthus, Olea, and Fraxinus. Finally, we demonstrate the use of ONT long-read sequencing data to reveal patterns in demographic history.
Assuntos
Fraxinus , Animais , Fraxinus/genética , Poliploidia , Genoma de Planta , Genômica , DemografiaRESUMO
Subgenome dominance after whole-genome duplication generates distinction in gene number and expression at the level of chromosome sets, but it remains unclear how this process may be involved in evolutionary novelty. Here we generated a chromosome-scale genome assembly of the Asian pitcher plant Nepenthes gracilis to analyse how its novel traits (dioecy and carnivorous pitcher leaves) are linked to genomic evolution. We found a decaploid karyotype and a clear indication of subgenome dominance. A male-linked and pericentromerically located region on the putative sex chromosome was identified in a recessive subgenome and was found to harbour three transcription factors involved in flower and pollen development, including a likely neofunctionalized LEAFY duplicate. Transcriptomic and syntenic analyses of carnivory-related genes suggested that the paleopolyploidization events seeded genes that subsequently formed tandem clusters in recessive subgenomes with specific expression in the digestive zone of the pitcher, where specialized cells digest prey and absorb derived nutrients. A genome-scale analysis suggested that subgenome dominance likely contributed to evolutionary innovation by permitting recessive subgenomes to diversify functions of novel tissue-specific duplicates. Our results provide insight into how polyploidy can give rise to novel traits in divergent and successful high-ploidy lineages.
Assuntos
Perfilação da Expressão Gênica , Genoma de Planta , Sintenia , Evolução MolecularRESUMO
Many specifics of the population histories of the Indigenous peoples of North America remain contentious owing to a dearth of physical evidence. Only few ancient human genomes have been recovered from the Pacific Northwest Coast, a region increasingly supported as a coastal migration route for the initial peopling of the Americas. Here, we report paleogenomic data from the remains of a â¼3,000-year-old female individual from Southeast Alaska, named Tatóok yík yées sháawat (TYYS). Our results demonstrate at least 3,000 years of matrilineal genetic continuity in Southeast Alaska, and that TYYS is most closely related to ancient and present-day northern Pacific Northwest Coast Indigenous Americans. We find no evidence of Paleo-Inuit (represented by Saqqaq) ancestry in present-day or ancient Pacific Northwest peoples. Instead, our analyses suggest the Saqqaq genome harbors Northern Native American ancestry. This study sheds further light on the human population history of the northern Pacific Northwest Coast.
RESUMO
During the Late Pleistocene, major parts of North America were periodically covered by ice sheets. However, there are still questions about whether ice-free refugia were present in the Alexander Archipelago along the Southeast (SE) Alaska coast during the last glacial maximum (LGM). Numerous subfossils have been recovered from caves in SE Alaska, including American black (Ursus americanus) and brown (U. arctos) bears, which today are found in the Alexander Archipelago but are genetically distinct from mainland bear populations. Hence, these bear species offer an ideal system to investigate long-term occupation, potential refugial survival and lineage turnover. Here, we present genetic analyses based on 99 new complete mitochondrial genomes from ancient and modern brown and black bears spanning the last ~45,000 years. Black bears form two SE Alaskan subclades, one preglacial and another postglacial, that diverged >100,000 years ago. All postglacial ancient brown bears are closely related to modern brown bears in the archipelago, while a single preglacial brown bear is found in a distantly related clade. A hiatus in the bear subfossil record around the LGM and the deep split of their pre- and postglacial subclades fail to support a hypothesis of continuous occupancy in SE Alaska throughout the LGM for either species. Our results are consistent with an absence of refugia along the SE Alaska coast, but indicate that vegetation quickly expanded after deglaciation, allowing bears to recolonize the area after a short-lived LGM peak.
Assuntos
Genoma Mitocondrial , Ursidae , Animais , Ursidae/genética , Alaska , Refúgio de Vida Selvagem , América do NorteRESUMO
The polar bear (Ursus maritimus) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears (Ursus arctos). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear's lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations.
Assuntos
Evolução Biológica , Hibridização Genética , Ursidae , Animais , Fluxo Gênico , Genoma/genética , Filogenia , Ursidae/genéticaRESUMO
The oldest confirmed remains of domestic dogs in North America are from mid-continent archaeological sites dated approximately 9900 calibrated years before present (cal BP). Although this date suggests that dogs may not have arrived alongside the first Native Americans, the timing and routes for the entrance of New World dogs remain uncertain. Here, we present a complete mitochondrial genome of a dog from southeast Alaska, dated to 10 150 ± 260 cal BP. We compared this high-coverage genome with data from modern dog breeds, historical Arctic dogs and American precontact dogs (PCDs) from before European arrival. Our analyses demonstrate that the ancient dog belongs to the PCD lineage, which diverged from Siberian dogs around 16 700 years ago. This timing roughly coincides with the minimum suggested date for the opening of the North Pacific coastal (NPC) route along the Cordilleran Ice Sheet and genetic evidence for the initial peopling of the Americas. This ancient southeast Alaskan dog occupies an early branching position within the PCD clade, indicating it represents a close relative of the earliest PCDs that were brought alongside people migrating from eastern Beringia southward along the NPC to the rest of the Americas. The stable isotope δ13C value of this early dog indicates a marine diet, different from the younger mid-continent PCDs' terrestrial diet. Although PCDs were largely replaced by modern European dog breeds, our results indicate that their population decline started approximately 2000 years BP, coinciding with the expansion of Inuit peoples, who are associated with traditional sled-dog culture. Our findings suggest that dogs formed part of the initial human habitation of the New World, and provide insights into their replacement by both Arctic and European lineages.
Assuntos
Genoma Mitocondrial , Alaska , América , Animais , Regiões Árticas , DNA Mitocondrial/genética , Cães , América do Norte , Filogenia , Estados UnidosRESUMO
The prevalence of chronic kidney disease (CKD) is rising worldwide and 10-15% of the global population currently suffers from CKD and its complications. Given the increasing prevalence of CKD there is an urgent need to find novel treatment options. The American black bear (Ursus americanus) copes with months of lowered kidney function and metabolism during hibernation without the devastating effects on metabolism and other consequences observed in humans. In a biomimetic approach to better understand kidney adaptations and physiology in hibernating black bears, we established a high-quality genome assembly. Subsequent RNA-Seq analysis of kidneys comparing gene expression profiles in black bears entering (late fall) and emerging (early spring) from hibernation identified 169 protein-coding genes that were differentially expressed. Of these, 101 genes were downregulated and 68 genes were upregulated after hibernation. Fold changes ranged from 1.8-fold downregulation (RTN4RL2) to 2.4-fold upregulation (CISH). Most notable was the upregulation of cytokine suppression genes (SOCS2, CISH, and SERPINC1) and the lack of increased expression of cytokines and genes involved in inflammation. The identification of these differences in gene expression in the black bear kidney may provide new insights in the prevention and treatment of CKD.
Assuntos
Regulação da Expressão Gênica , Genoma , Hibernação/genética , Ursidae/genética , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Receptor Nogo 2/genética , Estações do Ano , Análise de Sequência de DNA , Análise de Sequência de RNA , Proteínas Supressoras da Sinalização de Citocina/genética , Ursidae/fisiologiaRESUMO
At high latitudes, climatic shifts hypothetically initiate recurrent episodes of divergence by isolating populations in glacial refugia-ice-free regions that enable terrestrial species persistence. Upon glacial recession, populations subsequently expand and often come into contact with other independently diverging populations, resulting in gene flow. To understand how recurrent periods of isolation and contact may have impacted evolution at high latitudes, we investigated introgression dynamics in the stoat (Mustela erminea), a Holarctic mammalian carnivore, using whole-genome sequences. We identify two spatio-temporally distinct episodes of introgression coincident with large-scale climatic shifts: contemporary introgression in a mainland contact zone and ancient contact ~200 km south of the contemporary zone, in the archipelagos along North America's North Pacific Coast. Repeated episodes of gene flow highlight the central role of cyclic climates in structuring high-latitude diversity, through refugial divergence and introgressive hybridization. When introgression is followed by allopatric isolation (e.g., insularization) it may ultimately expedite divergence.
RESUMO
The route and timing of early human migration to the Americas have been a contentious topic for decades. Recent paleogenetic analyses suggest that the initial colonization from Beringia took place as early as 16 thousand years (ka) ago via a deglaciated corridor along the North Pacific coast. However, the feasibility of such a migration depends on the extent of the western Cordilleran Ice Sheet (CIS) and the available resources along the hypothesized coastal route during this timeframe. We date the culmination of maximum CIS conditions in southeastern Alaska, a potential bottleneck region for human migration, to ~20 to 17 ka ago with cosmogenic 10Be exposure dating and 14C dating of bones from an ice-overrun cave. We also show that productive marine and terrestrial ecosystems were established almost immediately following deglaciation. We conclude that CIS retreat ensured that an open and ecologically viable pathway through southeastern Alaska was available after 17 ka ago, which may have been traversed by early humans as they colonized the Americas.
Assuntos
Meio Ambiente , Migração Humana , Alaska , América , Geografia , HumanosRESUMO
Although anecdotally associated with local bears (Ursus arctos and U. thibetanus), the exact identity of 'hominid'-like creatures important to folklore and mythology in the Tibetan Plateau-Himalaya region is still surrounded by mystery. Recently, two purported yeti samples from the Himalayas showed genetic affinity with an ancient polar bear, suggesting they may be from previously unrecognized, possibly hybrid, bear species, but this preliminary finding has been under question. We conducted a comprehensive genetic survey of field-collected and museum specimens to explore their identity and ultimately infer the evolutionary history of bears in the region. Phylogenetic analyses of mitochondrial DNA sequences determined clade affinities of the purported yeti samples in this study, strongly supporting the biological basis of the yeti legend to be local, extant bears. Complete mitochondrial genomes were assembled for Himalayan brown bear (U. a. isabellinus) and black bear (U. t. laniger) for the first time. Our results demonstrate that the Himalayan brown bear is one of the first-branching clades within the brown bear lineage, while Tibetan brown bears diverged much later. The estimated times of divergence of the Tibetan Plateau and Himalayan bear lineages overlap with Middle to Late Pleistocene glaciation events, suggesting that extant bears in the region are likely descendants of populations that survived in local refugia during the Pleistocene glaciations.
Assuntos
Evolução Biológica , DNA Mitocondrial/genética , Genoma Mitocondrial , Filogenia , Ursidae/classificação , Animais , Tibet , Ursidae/genéticaRESUMO
BACKGROUND: Successful commensal bacteria have evolved to maintain colonization in challenging environments. The oral viridans streptococci are pioneer colonizers of dental plaque biofilm. Some of these bacteria have adapted to life in the oral cavity by binding salivary α-amylase, which hydrolyzes dietary starch, thus providing a source of nutrition. Oral streptococcal species bind α-amylase by expressing a variety of amylase-binding proteins (ABPs). Here we determine the genotypic basis of amylase binding where proteins of diverse size and function share a common phenotype. RESULTS: ABPs were detected in culture supernatants of 27 of 59 strains representing 13 oral Streptococcus species screened using the amylase-ligand binding assay. N-terminal sequences from ABPs of diverse size were obtained from 18 strains representing six oral streptococcal species. Genome sequencing and BLAST searches using N-terminal sequences, protein size, and key words identified the gene associated with each ABP. Among the sequenced ABPs, 14 matched amylase-binding protein A (AbpA), 6 matched amylase-binding protein B (AbpB), and 11 unique ABPs were identified as peptidoglycan-binding, glutamine ABC-type transporter, hypothetical, or choline-binding proteins. Alignment and phylogenetic analyses performed to ascertain evolutionary relationships revealed that ABPs cluster into at least six distinct, unrelated families (AbpA, AbpB, and four novel ABPs) with no phylogenetic evidence that one group evolved from another, and no single ancestral gene found within each group. AbpA-like sequences can be divided into five subgroups based on the N-terminal sequences. Comparative genomics focusing on the abpA gene locus provides evidence of horizontal gene transfer. CONCLUSION: The acquisition of an ABP by oral streptococci provides an interesting example of adaptive evolution.
Assuntos
Amilases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Genômica , Streptococcus/genética , Adaptação Biológica , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/classificação , DNA Bacteriano/isolamento & purificação , Transferência Genética Horizontal , Humanos , Modelos Moleculares , Boca/microbiologia , Filogenia , Estrutura Terciária de Proteína , Saliva/enzimologia , Alinhamento de Sequência , Análise de Sequência de Proteína , Simbiose , alfa-Amilases/metabolismoRESUMO
The subfamily Lamioideae (Lamiaceae) comprises ten tribes, of which only Stachydeae and Synandreae include New World members. Previous studies have investigated the phylogenetic relationships among the members of Synandreae based on plastid and nuclear ribosomal DNA loci. In an effort to re-examine the phylogenetic relationships within Synandreae, the current study incorporates data from four low-copy nuclear loci, PHOT1, PHOT2, COR, and PPR. Our results confirm previous studies based on chloroplast and nuclear ribosomal markers in supporting the monophyly of tribe Synandreae, as well as sister relationships between Brazoria and Warnockia, and between that pair of genera and a monophyletic Physostegia. However, we observe incongruence in the relationships of Macbridea and Synandra. The placement of Synandreae within Lamioideae is poorly resolved and incongruent among different analyses, and the sister group of Synandreae remains enigmatic. Comparison of the colonization and migration patterns corroborates a single colonization of the New World by Synandreae during the Late Miocene/Tortonian age. This is in contrast to the only other lamioid tribe that includes New World members, Stachydeae, which colonized the New World at least twice-during the mid-Miocene and Pliocene. Edaphic conditions and intolerance of soil acidity may be factors that restricted the distribution of most genera of Synandreae to southeastern and south-central North America, whereas polyploidy could have increased the colonizing capability of the more wide-ranging genus, Physostegia.
RESUMO
These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, "The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)" [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material.
RESUMO
The Hawaiian mints (Lamiaceae), one of the largest endemic plant lineages in the archipelago, provide an excellent system to study rapid diversification of a lineage with a remote, likely paleohybrid origin. Since their divergence from New World mints 4-5 million years ago the members of this lineage have diversified greatly and represent a remarkable array of vegetative and reproductive phenotypes. Today many members of this group are endangered or already extinct, and molecular phylogenetic work relies largely on herbarium samples collected during the last century. So far a gene-by-gene approach has been utilized, but the recent radiation of the Hawaiian mints has resulted in minimal sequence divergence and hence poor phylogenetic resolution. In our quest to trace the reticulate evolutionary history of the lineage, a resolved maternal phylogeny is necessary. We applied a high-throughput approach to sequence 12 complete or nearly complete plastid genomes from multiple Hawaiian mint species and relatives, including extinct and rare taxa. We also targeted 108 hypervariable regions from throughout the chloroplast genomes in nearly all of the remaining Hawaiian species, and relatives, using a next-generation amplicon sequencing approach. This procedure generated â¼20Kb of sequence data for each taxon and considerably increased the total number of variable sites over previous analyses. Our results demonstrate the potential of high-throughput sequencing of historic material for evolutionary studies in rapidly evolving lineages. Our study, however, also highlights the challenges of resolving relationships within recent radiations even at the genomic level.
Assuntos
Espécies em Perigo de Extinção , Extinção Biológica , Genomas de Plastídeos , Mentha/genética , Filogenia , Plastídeos/genética , Pareamento de Bases/genética , Sequência de Bases , Dano ao DNA , Havaí , Análise de Sequência de DNARESUMO
BACKGROUND: The population size of Atlantic walruses (Odobenus rosmarus rosmarus) is depleted relative to historical abundance levels. In Svalbard, centuries of over-exploitation brought the walrus herds to the verge of extinction, and such bottlenecks may have caused loss of genetic variation. To address this for Svalbard walruses, mitochondrial haplotypes of historical walruses from two major haul-out sites, Bjørnøya and Håøya, within the Archipelago were explored using bone samples from animals killed during the peak period of harvesting. RESULTS: Using ancient DNA methodologies, the mitochondrial NADH dehydrogenase 1 (ND1) gene, the cytochrome c oxidase 1 (COI) gene, and the control region (CR) were targeted for 15 specimens from Bjørnøya (of which five were entirely negative) and 9 specimens from Håøya (of which one was entirely negative). While ND1 and COI sequences were obtained for only a few samples, the CR delivered the most comprehensive data set, and the average genetic distance among historic Svalbard samples was 0.0028 (SD = 0.0023). CONCLUSIONS: The CR sequences from the historical samples appear to be nested among contemporary Atlantic walruses, and no distinct mitochondrial haplogroups were identified in the historical samples that may have been lost during the periods of extensive hunting. However, given the low sample size and poor phylogenetic resolution it cannot be excluded that such haplogroups existed.
Assuntos
Variação Genética , Genética Populacional/história , Região de Controle de Locus Gênico , Proteínas Mitocondriais/genética , Filogenia , Morsas/genética , Animais , Osso e Ossos/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Haplótipos , História do Século XX , História do Século XXI , Masculino , NADH Desidrogenase/genética , Densidade Demográfica , Svalbard , Morsas/classificaçãoRESUMO
The Spitsbergen stock of bowhead whales (Balaena mysticetus) is considered Critically Endangered by IUCN. Over recent decades, there have been only a few sightings, and very few biological samples are available for molecular analyses. Hence, genetic diversity of the extant Spitsbergen stock is unknown. Here, we present mitochondrial genomes from eight skin biopsy samples that were collected in 2006 and 2010. There were three different haplotypes, two of which have not previously been detected. Six samples shared the same haplotype, indicating that they were obtained from closely related whales, or possibly the same individual. Average nucleotide diversity was π = 0.0037, with a total of 93 variable positions among the haplotypes.
RESUMO
PREMISE OF THE STUDY: Lamioideae, one of the most species-rich subfamilies within Lamiaceae, exhibits a remarkable diversity in morphology and habit and is found in many temperate to subtropical regions across the globe. Previous studies based on chloroplast DNA (cpDNA) sequence data produced a tribal classification of Lamioideae, but so far this has not been confirmed with nuclear DNA loci. METHODS: We investigated sequence variation in a low-copy nuclear pentatricopeptide repeat (PPR) region and compared the phylogenetic results with previously published sequence data from a concatenated data set comprising four cpDNA loci. We incorporated representatives of all 10 lamioid tribes and some unclassified taxa, analyzed the data using phylogenetic inference, and estimated divergence times and ancestral areas for major nodes. KEY RESULTS: Our results showed overall topological similarities between the cpDNA and PPR phylogenies with strong support for most tribes. However, we also observed incongruence in the circumscription of some tribes, including Gomphostemmateae and Pogostemoneae and in the relationships among tribes. Our results suggest an Oligocene-Miocene origin of the Lamioideae crown group. Asia and the Mediterranean region appear to have been centers of diversity and place of origin for many lamioid tribes. CONCLUSIONS: This study represents the first phylogeny of subfamily Lamioideae inferred from low-copy nuclear DNA data. We show that most lamioid tribes are corroborated, although the exact circumscription of two tribes is questioned. We have shed further light on the evolutionary relationships within Lamioideae, and this study demonstrates the utility of the PPR region for such subfamilial-level phylogenetic studies.