Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Clin Transl Med ; 13(4): e1232, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37006170

RESUMO

BACKGROUND: Osteoarthritis (OA), a multifaceted condition, poses a significant challenge for the successful clinical development of therapeutics due to heterogeneity. However, classifying molecular endotypes of OA pathogenesis could provide invaluable phenotype-directed routes for stratifying subgroups of patients for targeted therapeutics, leading to greater chances of success in trials. This study establishes endotypes in OA soft joint tissue driven by obesity in both load-bearing and non-load bearing joints. METHODS: Hand, hip, knee and foot joint synovial tissue was obtained from OA patients (n = 32) classified as obese (BMI > 30) or normal weight (BMI 18.5-24.9). Isolated fibroblasts (OA SF) were assayed by Olink proteomic panel, seahorse metabolic flux assay, Illumina's NextSeq 500 bulk and Chromium 10X single cell RNA-sequencing, validated by Luminex and immunofluorescence. RESULTS: Targeted proteomic, metabolic and transcriptomic analysis found the inflammatory landscape of OA SFs are independently impacted by obesity, joint loading and anatomical site with significant heterogeneity between obese and normal weight patients, confirmed by bulk RNAseq. Further investigation by single cell RNAseq identified four functional molecular endotypes including obesity specific subsets defined by an inflammatory endotype related to immune cell regulation, fibroblast activation and inflammatory signaling, with up-regulated CXCL12, CFD and CHI3L1 expression. Luminex confirmed elevated chitase3-like-1(229.5 vs. 49.5 ng/ml, p < .05) and inhibin (20.6 vs. 63.8 pg/ml, p < .05) in obese and normal weight OA SFs, respectively. Lastly, we find SF subsets in obese patients spatially localise in sublining and lining layers of OA synovium and can be distinguished by differential expression of the transcriptional regulators MYC and FOS. CONCLUSION: These findings demonstrate the significance of obesity in changing the inflammatory landscape of synovial fibroblasts in both load bearing and non-load bearing joints. Describing multiple heterogeneous OA SF populations characterised by specific molecular endotypes, which drive heterogeneity in OA disease pathogenesis. These molecular endotypes may provide a route for the stratification of patients in clinical trials, providing a rational for the therapeutic targeting of specific SF subsets in specific patient populations with arthritic conditions.


Assuntos
Osteoartrite , Proteômica , Humanos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Obesidade/genética , Obesidade/metabolismo , Fibroblastos/metabolismo
2.
Adv Exp Med Biol ; 1363: 35-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35220565

RESUMO

The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.


Assuntos
Artrite Reumatoide , Lúpus Eritematoso Sistêmico , RNA Longo não Codificante , Reumatologia , Apoptose/genética , Artrite Reumatoide/genética , Humanos , Lúpus Eritematoso Sistêmico/genética , RNA Longo não Codificante/genética
3.
J Clin Endocrinol Metab ; 107(1): 177-191, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480570

RESUMO

CONTEXT: Adipose tissue and physical inactivity both influence metabolic health and systemic inflammation, but how adipose tissue responds to chronic physical inactivity is unknown. OBJECTIVE: This work aimed to characterize the impact of chronic physical inactivity on adipose tissue in healthy, young males. METHODS: We collected subcutaneous adipose tissue from 20 healthy, young men before and after 60 days of complete bed rest with energy intake reduced to maintain energy balance and fat mass. We used RNA sequencing, flow cytometry, ex vivo tissue culture, and targeted protein analyses to examine adipose tissue phenotype. RESULTS: Our results indicate that the adipose tissue transcriptome, stromal cellular compartment, and insulin signaling protein abundance are largely unaffected by bed rest when fat mass is kept stable. However, there was an increase in the circulating concentration of several adipokines, including plasma leptin, which was associated with inactivity-induced increases in plasma insulin and absent from adipose tissue cultured ex vivo under standardized culture conditions. CONCLUSION: Physical inactivity-induced disturbances to adipokine concentrations such as leptin, without changes to fat mass, could have profound metabolic implications outside a clinical facility when energy intake is not tightly controlled.


Assuntos
Metabolismo Basal/imunologia , Comportamento Sedentário , Gordura Subcutânea/metabolismo , Adulto , Repouso em Cama , Voluntários Saudáveis , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/metabolismo , Leptina/sangue , Leptina/metabolismo , Masculino , Pessoa de Meia-Idade , Gordura Subcutânea/imunologia , Adulto Jovem
4.
J Physiol ; 600(4): 921-947, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33895996

RESUMO

KEY POINTS: Ageing is associated with increased systemic inflammation and metabolic dysfunction that contributes to the development of age-associated diseases. The role of adipose tissue in immunometabolic alterations that take place with ageing is unknown in humans. We show, in healthy, active and lean older adults, that adipose tissue, but not skeletal muscle, displays considerable pro-inflammatory transcriptomic, cellular and secretory changes, as well as a reduction in insulin signalling proteins compared to younger adults. These findings indicate that adipose tissue undergoes substantial immunometabolic alterations with ageing, and that these changes are tissue-specific and more profound than those observed in skeletal muscle or in the circulation. These results identify adipose tissue as an important tissue in the biological ageing process in humans, which may exhibit signs of immunometabolic dysfunction prior to systemic manifestation. ABSTRACT: Ageing and obesity are both characterized by inflammation and a deterioration in metabolic health. It is now clear that adipose tissue plays a major role in inflammation and metabolic control in obesity, although little is known about the role of adipose tissue in human ageing. To understand how ageing impacts adipose tissue, we characterized subcutaneous adipose tissue and skeletal muscle samples from twelve younger (27 ± 4 years [Young]) and twelve older (66 ± 5 years [Old]) active/non-obese males. We performed a wide-range of whole-body and tissue measures, including RNA-sequencing and multicolour flow cytometry. We also measured a range of inflammatory and metabolic proteins in the circulation and their release by adipose tissue, ex vivo. Both adipose tissue and muscle had ∼2-fold more immune cells per gram of tissue with ageing. In adipose tissue, this immune cell infiltration was driven by increased memory/effector T-cells, whereas, in muscle, the accumulation was driven by memory/effector T-cells and macrophages. Transcriptomic analysis revealed that, with ageing, adipose tissue, but not muscle, was enriched for inflammatory transcripts/pathways related to acquired and innate immunity. Ageing also increased the adipose tissue pro-inflammatory secretory profile. Insulin signalling protein content was reduced in adipose tissue, but not muscle. Our findings indicate that adipose tissue undergoes substantial immunometabolic changes with ageing in humans, and that these changes are tissue-specific and more profound than those observed in the circulation and skeletal muscle.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Idoso , Envelhecimento , Humanos , Masculino , Músculo Esquelético/metabolismo , Obesidade/metabolismo
5.
EBioMedicine ; 72: 103618, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34628351

RESUMO

BACKGROUND: Synovial inflammation is associated with pain severity in patients with knee osteoarthritis (OA). The aim here was to determine in a population with knee OA, whether synovial tissue from areas associated with pain exhibited different synovial fibroblast subsets, compared to synovial tissue from sites not associated with pain. A further aim was to compare differences between early and end-stage disease synovial fibroblast subsets. METHODS: Patients with early knee OA (n = 29) and end-stage knee OA (n = 22) were recruited. Patient reported pain was recorded by questionnaire and using an anatomical knee pain map. Proton density fat suppressed MRI axial and sagittal sequences were analysed and scored for synovitis. Synovial tissue was obtained from the medial and lateral parapatellar and suprapatellar sites. Fibroblast single cell RNA sequencing was performed using Chromium 10X and analysed using Seurat. Transcriptomes were functionally characterised using Ingenuity Pathway Analysis and the effect of fibroblast secretome on neuronal growth assessed using rat DRGN. FINDINGS: Parapatellar synovitis was significantly associated with the pattern of patient-reported pain in knee OA patients. Synovial tissue from sites of patient-reported pain exhibited a differential transcriptomic phenotype, with distinct synovial fibroblast subsets in early OA and end-stage OA. Functional pathway analysis revealed that synovial tissue and fibroblast subsets from painful sites promoted fibrosis, inflammation and the growth and activity of neurons. The secretome of fibroblasts from early OA painful sites induced greater survival and neurite outgrowth in dissociated adult rodent dorsal root ganglion neurons. INTERPRETATION: Sites of patient-reported pain in knee OA exhibit a different synovial tissue phenotype and distinct synovial fibroblast subsets. Further interrogation of these fibroblast pathotypes will increase our understanding of the role of synovitis in OA joint pain and provide a rationale for the therapeutic targeting of fibroblast subsets to alleviate pain in patients. FUNDING: This study was funded by Versus Arthritis, UK (21530; 21812).


Assuntos
Artralgia/patologia , Fibroblastos/patologia , Articulação do Joelho/patologia , Osteoartrite do Joelho/patologia , Idoso , Feminino , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Dor/patologia , Medição da Dor/métodos , Fenótipo , Secretoma/fisiologia , Índice de Gravidade de Doença , Membrana Sinovial/patologia , Sinovite/patologia
6.
Sci Rep ; 11(1): 19650, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608225

RESUMO

MicroRNAs are extremely promising candidates for early cancer diagnosis and prognosis. The levels of circulating microRNAs provide valuable information about cancer disease at its early stages. However, the levels of microRNAs that need to be detected are extremely low and difficult to discriminate from a large pool of oligonucleotides. There is the need for accurate, rapid and sensitive detection methodologies for detection of microRNAs. We developed electrochemical impedance spectroscopy peptide nucleic acid (PNA)-based sensors that can detect miRNAs in diluted serum with a limit of detection of 0.38 fM. In order to further improve the accuracy and reliability of the sensors, we developed an assay using magnetic beads for simple and rapid fishing of target microRNAs from solution and its pre-concentration prior to electrochemical detection. Our methodology utilizes magnetic beads for the capture of the target microRNA from solution and brings the concentrated sample to the sensor surface. We modify the magnetic beads with locked nucleic acids (LNA), which have high affinity and specificity to their complementary microRNA sequence. The separated and concentrated microRNA is then detected using the PNA-based sensors. By exposing the sensing electrodes only to the captured microRNAs, interferences from other nucleotides or biomolecules from the sample are eliminated.


Assuntos
Técnicas Biossensoriais , MicroRNA Circulante/genética , Técnicas Eletroquímicas , MicroRNAs/genética , Hibridização de Ácido Nucleico/métodos , Oligonucleotídeos , Espectroscopia Dielétrica , Humanos , Espectrofotometria Ultravioleta
7.
Biomedicines ; 9(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34440106

RESUMO

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two of the most common chronic inflammatory joint diseases, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. The pathology of both OA and RA involves multiple tissues within the joint, including the synovial joint lining and the bone, as well as the articular cartilage in OA. In this review, we discuss the potential for the development of oligonucleotide therapies for these disorders by examining the evidence that oligonucleotides can modulate the key cellular pathways that drive the pathology of the inflammatory diseased joint pathology, as well as evidence in preclinical in vivo models that oligonucleotides can modify disease progression.

8.
Lancet Respir Med ; 9(3): 285-294, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33197388

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease accounting for 1% of UK deaths. In the familial form of pulmonary fibrosis, causal genes have been identified in about 30% of cases, and a majority of these causal genes are associated with telomere maintenance. Prematurely shortened leukocyte telomere length is associated with IPF and chronic obstructive pulmonary disease (COPD), a disease with similar demographics and shared risk factors. Using mendelian randomisation, we investigated evidence supporting a causal role for short telomeres in IPF and COPD. METHODS: Mendelian randomisation inference of telomere length causality was done for IPF (up to 1369 cases) and COPD (13 538 cases) against 435 866 controls of European ancestry in UK Biobank. Polygenic risk scores were calculated and two-sample mendelian randomisation analyses were done using seven genetic variants previously associated with telomere length, with replication analysis in an IPF cohort (2668 cases vs 8591 controls) and COPD cohort (15 256 cases vs 47 936 controls). FINDINGS: In the UK Biobank, a genetically instrumented one-SD shorter telomere length was associated with higher odds of IPF (odds ratio [OR] 4·19, 95% CI 2·33-7·55; p=0·0031) but not COPD (1·07, 0·88-1·30; p=0·51). Similarly, an association was found in the IPF replication cohort (12·3, 5·05-30·1; p=0·0015) and not in the COPD replication cohort (1·04, 0·71-1·53; p=0·83). Meta-analysis of the two-sample mendelian randomisation results provided evidence inferring that shorter telomeres cause IPF (5·81 higher odds of IPF, 95% CI 3·56-9·50; p=2·19 × 10-12). There was no evidence to infer that telomere length caused COPD (OR 1·07, 95% CI 0·90-1·27; p=0·46). INTERPRETATION: Cellular senescence is hypothesised as a major driving force in IPF and COPD; telomere shortening might be a contributory factor in IPF, suggesting divergent mechanisms in COPD. Defining a key role for telomere shortening enables greater focus in telomere-related diagnostics, treatments, and the search for a cure in IPF. Investigation of therapies that improve telomere length is warranted. FUNDING: Medical Research Council.


Assuntos
Fibrose Pulmonar Idiopática/genética , Doença Pulmonar Obstrutiva Crônica/genética , Encurtamento do Telômero/genética , Idoso , Estudos de Casos e Controles , Causalidade , Feminino , Humanos , Fibrose Pulmonar Idiopática/epidemiologia , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Fatores de Risco
9.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947693

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive chronic disease characterized by excessing scarring of the lungs leading to irreversible decline in lung function. The aetiology and pathogenesis of the disease are still unclear, although lung fibroblast and epithelial cell activation, as well as the secretion of fibrotic and inflammatory mediators, have been strongly associated with the development and progression of IPF. Significantly, long non-coding RNAs (lncRNAs) are emerging as modulators of multiple biological processes, although their function and mechanism of action in IPF is poorly understood. LncRNAs have been shown to be important regulators of several diseases and their aberrant expression has been linked to the pathophysiology of fibrosis including IPF. This review will provide an overview of this emerging role of lncRNAs in the development of IPF.


Assuntos
Suscetibilidade a Doenças , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/metabolismo , RNA Longo não Codificante/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Biomarcadores , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pneumonia/complicações , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia , Processamento Pós-Transcricional do RNA , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Avaliação de Sintomas , Transcrição Gênica
10.
Arthritis Rheumatol ; 72(4): 609-619, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682073

RESUMO

OBJECTIVE: To identify long noncoding RNAs (lncRNAs) associated with the inflammatory phenotype of synovial fibroblasts from obese patients with osteoarthritis (OA), and to explore the expression and function of these lncRNAs. METHODS: Synovium was collected from normal-weight patients with hip fracture (non-OA; n = 6) and from normal-weight (n = 8) and obese (n = 8) patients with hip OA. Expression of RNA was determined by RNA-sequencing and quantitative reverse transcription-polymerase chain reaction. Knockdown of lncRNA was performed using LNA-based GapmeRs. Synovial fibroblast cytokine production was measured by enzyme-linked immunosorbent assay. RESULTS: Synovial fibroblasts from obese patients with OA secreted greater levels of interleukin-6 (IL-6) (mean ± SEM 162 ± 21 pg/ml; P < 0.001) and CXCL8 (262 ± 67 pg/ml; P < 0.05) compared to fibroblasts from normal-weight patients with OA (IL-6, 51 ± 4 pg/ml; CXCL8, 78 ± 11 pg/ml) or non-OA patients (IL-6, 35 ± 3 pg/ml; CXCL8, 56 ± 6 pg/ml) (n = 6 patients per group). RNA-sequencing revealed that fibroblasts from obese OA patients exhibited an inflammatory transcriptome, with increased expression of proinflammatory messenger RNAs (mRNAs) as compared to that in fibroblasts from normal-weight OA or non-OA patients (>2-fold change, P < 0.05; n = 4 patients per group). A total of 19 lncRNAs were differentially expressed between normal-weight OA and non-OA patient fibroblasts, and a further 19 lncRNAs were differentially expressed in fibroblasts from obese OA patients compared to normal-weight OA patients (>2-fold change, P < 0.05 for each), which included the lncRNA for metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). MALAT1 was rapidly induced upon stimulation of OA synovial fibroblasts with proinflammatory cytokines, and was up-regulated in the synovium from obese OA patients as compared to normal-weight OA patients (1.6-fold change, P < 0.001) or non-OA patients (6-fold change, P < 0.001). MALAT1 knockdown in OA synovial fibroblasts (n = 4 patients) decreased the levels of mRNA expression and protein secretion of CXCL8 (>1.5-fold change, P < 0.01), whereas it increased expression of mRNAs for TRIM6 (>2-fold change, P < 0.01), IL7R (<2-fold change, P < 0.01), HIST1H1C (>1.5-fold change, P < 0.001), and MAML3 (>1.5-fold change, P < 0.001). In addition, MALAT1 knockdown inhibited the proliferation of synovial fibroblasts from obese patients with OA. CONCLUSION: Synovial fibroblasts from obese patients with hip OA exhibit an inflammatory phenotype. MALAT1 lncRNA may mediate joint inflammation in obese OA patients.


Assuntos
Fibroblastos/metabolismo , Interleucina-6/metabolismo , Obesidade/metabolismo , Osteoartrite do Quadril/metabolismo , RNA Longo não Codificante/metabolismo , Membrana Sinovial/metabolismo , Idoso , Proliferação de Células/fisiologia , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Osteoartrite do Quadril/complicações
11.
Cells ; 8(10)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554266

RESUMO

The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine offers promising perspectives for the treatment of major depressive disorder. Although ketamine demonstrates rapid and long-lasting effects, even in treatment-resistant patients, to date, the underlying mode of action remains elusive. Thus, the aim of our study was to investigate the molecular mechanism of ketamine at clinically relevant concentrations by establishing an in vitro model based on human induced pluripotent stem cells (iPSCs)-derived neural progenitor cells (NPCs). Notably, ketamine increased the proliferation of NPCs independent of the NMDA receptor, while transcriptome analysis revealed significant upregulation of insulin-like growth factor 2 (IGF2) and p11, a member of the S100 EF-hand protein family, which are both implicated in the pathophysiology of depression, 24 h after ketamine treatment. Ketamine (1 µM) was able to increase cyclic adenosine monophosphate (cAMP) signaling in NPCs within 15 min and cell proliferation, while ketamine-induced IGF2 expression was reduced after PKA inhibition with cAMPS-Rp. Furthermore, 24 h post-administration of ketamine (15 mg/kg) in vivo confirmed phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in the subgranular zone (SGZ) of the hippocampus in C57BL/6 mice. In conclusion, ketamine promotes the proliferation of NPCs presumably by involving cAMP-IGF2 signaling.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fator de Crescimento Insulin-Like II/metabolismo , Ketamina/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Fator de Crescimento Insulin-Like II/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/fisiologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/efeitos dos fármacos
12.
Noncoding RNA ; 5(2)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010202

RESUMO

Innate immunity provides the initial defence against infection and it is now clear that long non-coding RNAs (lncRNAs) are important regulators of this response. Following activation of the innate response, we commonly see rapid induction of these lncRNAs and this is often mediated via the pro-inflammatory transcription factor, nuclear factor-κB (NF-κB). Knockdown studies have shown that lncRNAs tend to act in trans to regulate the expression of multiple inflammatory mediators and other responses. Mechanistically, many lncRNAs have demonstrated acting through heterogeneous nuclear ribonucleoproteins, complexes that are implicated chromatin re-modelling, transcription process and translation. In addition, these lncRNAs have also been shown to interact with multiple other proteins involved in the regulation of chromatin re-modelling, as well as those proteins involved in intracellular immune signalling, which include NF-κB. In this review, we will describe the evidence that supports this emerging role of lncRNA in the innate immune response.

13.
Sci Rep ; 9(1): 6020, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988425

RESUMO

Phenotypic changes in lung fibroblasts are believed to contribute to the development of Idiopathic Pulmonary Fibrosis (IPF), a progressive and fatal lung disease. Long intergenic non-coding RNAs (lincRNAs) have been identified as novel regulators of gene expression and protein activity. In non-stimulated cells, we observed reduced proliferation and inflammation but no difference in the fibrotic response of IPF fibroblasts. These functional changes in non-stimulated cells were associated with changes in the expression of the histone marks, H3K4me1, H3K4me3 and H3K27ac indicating a possible involvement of epigenetics. Following activation with TGF-ß1 and IL-1ß, we demonstrated an increased fibrotic but reduced inflammatory response in IPF fibroblasts. There was no significant difference in proliferation following PDGF exposure. The lincRNAs, LINC00960 and LINC01140 were upregulated in IPF fibroblasts. Knockdown studies showed that LINC00960 and LINC01140 were positive regulators of proliferation in both control and IPF fibroblasts but had no effect upon the fibrotic response. Knockdown of LINC01140 but not LINC00960 increased the inflammatory response, which was greater in IPF compared to control fibroblasts. Overall, these studies demonstrate for the first time that lincRNAs are important regulators of proliferation and inflammation in human lung fibroblasts and that these might mediate the reduced inflammatory response observed in IPF-derived fibroblasts.


Assuntos
Fibroblastos/patologia , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , RNA Longo não Codificante/genética , Células Cultivadas , Epigênese Genética , Feminino , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Transcriptoma
14.
Front Immunol ; 9: 2906, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619270

RESUMO

There is accumulating evidence to indicate that long non-coding RNAs (lncRNAs) are important regulators of the inflammatory response. In this report, we have employed next generation sequencing to identify 14 lncRNAs that are differentially expressed in human lung fibroblasts following the induction of inflammation using interleukin-1ß (IL-1ß). Knockdown of the two most highly expressed lncRNAs, IL7AS, and MIR3142HG, showed that IL7AS negatively regulated IL-6 release whilst MIR3142HG was a positive regulator of IL-8 and CCL2 release. Parallel studies in fibroblasts derived from patients with idiopathic pulmonary fibrosis showed similar increases in IL7AS levels, that also negatively regulate IL-6 release. In contrast, IL-1ß-induced MIR3142HG expression, and its metabolism to miR-146a, was reduced by 4- and 9-fold in IPF fibroblasts, respectively. This correlated with a reduced expression of inflammatory mediators whilst MIR3142HG knockdown showed no effect upon IL-8 and CCL2 release. Pharmacological studies showed that IL-1ß-induced IL7AS and MIR3142HG production and release of IL-6, IL-8, and CCL2 in both control and IPF fibroblasts were mediated via an NF-κB-mediated pathway. In summary, we have cataloged those lncRNAs that are differentially expressed following IL-1ß-activation of human lung fibroblasts, shown that IL7AS and MIR3142HG regulate the inflammatory response and demonstrated that the reduced inflammatory response in IPF fibroblast is correlated with attenuated expression of MIR3142HG/miR-146a.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fibrose Pulmonar Idiopática/genética , Inflamação/genética , Interleucina-1beta/farmacologia , RNA Longo não Codificante/genética , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Fibrose Pulmonar Idiopática/patologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade
15.
Arthritis Res Ther ; 19(1): 210, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934972

RESUMO

BACKGROUND: A recent systematic review identified four candidate serum-soluble bone-turnover biomarkers (dickkopf-1, Dkk-1; macrophage-colony stimulating factor, M-CSF; matrix metalloproteinase-3, MMP-3; osteoprotegerin, OPG) showing possible association with psoriatic arthritis (PsA). We aimed to: (i) confirm and determine if these four biomarkers are associated with PsA; (ii) differentiate psoriasis cases with and without arthritis; and (iii) differentiate PsA cases with and without axial arthritis. METHODS: A prospective cross-sectional comparative two-centre study recruited 200 patients with psoriasis without arthritis (PsC), 127 with PsA without axial arthritis (pPsA), 117 with PsA with axial arthritis (psoriatic spondyloarthritis, PsSpA), 157 with ankylosing spondylitis (AS) without psoriasis, and 50 matched healthy controls (HC). Serum biomarker concentrations were measured using ELISA. Multivariable regression and receiver operating characteristic analyses were performed. RESULTS: MMP-3 concentrations were significantly higher and M-CSF significantly lower in each arthritis disease group compared with HC (p ≤ 0.02). MMP-3 concentrations were significantly higher (adjusted odds ratio, ORadj 1.02 per ng/ml increase in concentration; p = 0.0004) and M-CSF significantly lower (ORadj 0.44 per ng/ml increase; p = 0.01) in PsA (pPsA and PsSpA combined) compared with PsC. Dkk-1 concentrations were significantly higher (ORadj 1.22 per ng/mL increase; p = 0.01), and OPG concentrations significantly lower (ORadj 0.20 per ng/mL increase; p = 0.02) in patients with axial arthritis (PsSpA and AS combined) than in those without (pPsA). Furthermore, Dkk-1 concentrations were significantly higher along a spectrum of increasing axial arthritis; Dkk-1 concentrations were higher in AS compared with PsSpA (ORadj 1.18 per ng/mL increase; p = 0.02). Receiver operating characteristic analysis showed MMP-3 to be the best single biomarker for differentiating PsA from PsC (AUC 0.70 for a cut-off of 14.51 ng/mL; sensitivity 0.76, specificity 0.60). CONCLUSIONS: MMP-3 and M-CSF are biomarkers for the presence of arthritis in psoriatic disease, and could therefore be used to screen for PsA in psoriasis cohorts. Dkk-1 and OPG are biomarkers of axial arthritis; they could therefore be used to screen for the presence of axial disease in PsA cases, and help differentiate PsSpA from AS. High concentrations of Dkk-1 in AS and PsSpA compared with HC, support previous reports that Dkk-1 is dysfunctional in the spondyloarthritides.


Assuntos
Artrite Psoriásica/sangue , Biomarcadores/sangue , Psoríase/sangue , Adulto , Idoso , Área Sob a Curva , Remodelação Óssea/fisiologia , Estudos Transversais , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Fator Estimulador de Colônias de Macrófagos/sangue , Masculino , Metaloproteinase 3 da Matriz/sangue , Pessoa de Meia-Idade , Osteoprotegerina/sangue , Estudos Prospectivos , Curva ROC , Sensibilidade e Especificidade
16.
Front Immunol ; 8: 1038, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900427

RESUMO

Despite increasing evidence to indicate that long non-coding RNAs (lncRNAs) are novel regulators of immunity, there has been no systematic attempt to identify and characterize the lncRNAs whose expression is changed following the induction of the innate immune response. To address this issue, we have employed next-generation sequencing data to determine the changes in the lncRNA profile in four human (monocytes, macrophages, epithelium, and chondrocytes) and four mouse cell types (RAW 264.7 macrophages, bone marrow-derived macrophages, peritoneal macrophages, and splenic dendritic cells) following exposure to the pro-inflammatory mediators, lipopolysaccharides (LPS), or interleukin-1ß. We show differential expression of 204 human and 210 mouse lncRNAs, with positional analysis demonstrating correlation with immune-related genes. These lncRNAs are predominantly cell-type specific, composed of large regions of repeat sequences, and show poor evolutionary conservation. Comparison within the human and mouse sequences showed less than 1% sequence conservation, although we identified multiple conserved motifs. Of the 204 human lncRNAs, 21 overlapped with syntenic mouse lncRNAs, of which five were differentially expressed in both species. Among these syntenic lncRNA was IL7-AS (antisense), which was induced in multiple cell types and shown to regulate the production of the pro-inflammatory mediator interleukin-6 in both human and mouse cells. In summary, we have identified and characterized those lncRNAs that are differentially expressed following activation of the human and mouse innate immune responses and believe that these catalogs will provide the foundation for the future analysis of the role of lncRNAs in immune and inflammatory responses.

17.
Sci Rep ; 7(1): 8024, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28808260

RESUMO

Myositis is characterised by muscle inflammation and weakness. Although generally thought to be driven by a systemic autoimmune response, increasing evidence suggests that intrinsic changes in the muscle might also contribute to the pathogenesis. Long non-coding RNAs (lncRNAs) are a family of novel genes that regulate gene transcription and translation. To determine the potential role of lncRNAs, we employed next generation sequencing to examine the transcriptome in muscle biopsies obtained from two histologically distinct patient populations, inclusion body myositis (IBM) and anti-Jo-1-associated myositis (Jo-1). 1287 mRNAs and 1068 mRNAs were differentially expressed in the muscle from Jo-1 and IBM patients, respectively. Pathway analysis showed the top canonical pathway in both Jo-1 and IBM was oxidative phosphorylation and mitochondrial dysfunction. We identified 731 known and 325 novel lncRNAs in the muscles biopsies. Comparison with controls showed 55 and 46 lncRNAs were differentially expressed in IBM and Jo-1 myositis, respectively. Of these, 16 lncRNAs were differentially expressed in both IBM and Jo-1 myositis and included upregulated H19, lncMyoD and MALAT1. Given that these are known to regulate muscle proliferation and differentiation, we speculate that changes in lncRNAs might contribute to the phenotypic changes in Jo-1 and IBM myositis.


Assuntos
Miosite de Corpos de Inclusão/genética , RNA Longo não Codificante/genética , Transcriptoma , Adulto , Idoso , Anticorpos Antinucleares/imunologia , Humanos , Pessoa de Meia-Idade , Miosite de Corpos de Inclusão/imunologia , Miosite de Corpos de Inclusão/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima
18.
Respir Res ; 18(1): 12, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28073359

RESUMO

BACKGROUND: Preinvasive squamous cell cancer (PSCC) are local transformations of bronchial epithelia that are frequently observed in current or former smokers. Their different grades and sizes suggest a continuum of dysplastic change with increasing severity, which may culminate in invasive squamous cell carcinoma (ISCC). As a consequence of the difficulty in isolating cancerous cells from biopsies, the molecular pathology that underlies their histological variability remains largely unknown. METHOD: To address this issue, we have employed microdissection to isolate normal bronchial epithelia and cancerous cells from low- and high-grade PSCC and ISCC, from paraffin embedded (FFPE) biopsies and determined gene expression using Affymetric Human Exon 1.0 ST arrays. Tests for differential gene expression were performed using the Bioconductor package limma followed by functional analyses of differentially expressed genes in IPA. RESULTS: Examination of differential gene expression showed small differences between low- and high-grade PSCC but substantial changes between PSCC and ISCC samples (184 vs 1200 p-value <0.05, fc ±1.75). However, the majority of the differentially expressed PSCC genes (142 genes: 77%) were shared with those in ISCC samples. Pathway analysis showed that these shared genes are associated with DNA damage response, DNA/RNA metabolism and inflammation as major biological themes. Cluster analysis identified 12 distinct patterns of gene expression including progressive up or down-regulation across PSCC and ISCC. Pathway analysis of incrementally up-regulated genes revealed again significant enrichment of terms related to DNA damage response, DNA/RNA metabolism, inflammation, survival and proliferation. Altered expression of selected genes was confirmed using RT-PCR, as well as immunohistochemistry in an independent set of 45 ISCCs. CONCLUSIONS: Gene expression profiles in PSCC and ISCC differ greatly in terms of numbers of genes with altered transcriptional activity. However, altered gene expression in PSCC affects canonical pathways and cellular and biological processes, such as inflammation and DNA damage response, which are highly consistent with hallmarks of cancer.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Idoso , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Microdissecção e Captura a Laser , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Células Tumorais Cultivadas
20.
Methods Mol Biol ; 1468: 11-8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27662866

RESUMO

The human genome is widely transcribed outside of protein-coding genes, producing thousands of noncoding RNAs from different subfamilies including enhancer RNAs. Functional studies to determine the role of individual genes are challenging with noncoding RNAs appearing to be more difficult to knockdown than mRNAs. One factor that may have hindered progress is that the majority of noncoding RNAs are thought to be located within the nucleus, where the efficiency of traditional RNA interference techniques is debatable. Here we present an alternative RNA interference technique utilizing Locked Nucleic Acids, which is able to efficiently knockdown noncoding RNAs irrespective of intracellular location.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Oligonucleotídeos/genética , RNA Longo não Codificante/genética , Linhagem Celular , Núcleo Celular/genética , Células Cultivadas , Elementos Facilitadores Genéticos , Humanos , Monócitos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA