Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Microorganisms ; 11(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375032

RESUMO

The imbalance of mucosal immunity in the lower gastrointestinal tract can lead to chronic inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis. IBD is a chronic inflammatory disorder that causes small and/or large intestines ulceration. According to previous studies, recombinant interleukin (IL)-10 protein and genetically modified bacteria secreting IL-10 ameliorate dextran sulfate sodium (DSS)-induced colitis in mice. IL-19 is a transcriptional activator of IL-10 and can alter the balance of T helper 1 (Th)1/Th2 cells in favor of Th2. In this study, we aimed to investigate whether the expression of the murine IL-19 gene carried by Salmonella choleraesuis (S. choleraesuis) could ameliorate murine IBD. Our results showed that the attenuated S. choleraesuis could carry and express the IL-19 gene-containing plasmid for IBD gene therapy by reducing the mortality and clinical signs in DSS-induced acute colitis mice as compared to the untreated ones. We also found that IL-10 expression was induced in IL-19-treated colitis mice and prevented inflammatory infiltrates and proinflammatory cytokine expression in these mice. We suggest that S. choleraesuis encoding IL-19 provides a new strategy for treating IBD in the future.

2.
J Biomed Sci ; 30(1): 14, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823664

RESUMO

BACKGROUND: Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the ß-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS: We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS: Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION: We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Camundongos , Proteínas Virais/genética , Galectina 3/genética , Galectina 3/metabolismo , Regulação para Cima , Influenza Humana/genética , RNA Viral/metabolismo , Vírus da Influenza A/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/genética
3.
Mol Neurobiol ; 60(3): 1331-1352, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36445635

RESUMO

Autism spectrum disorder (ASD) represents a heterogeneous group of neurodevelopmental disorders characterized by deficits in social communication, social interaction, and the presence of restricted repetitive behaviors. The cause of ASD involves complex interactions between genetic and environmental factors. Haploinsufficiency of the Coiled-coil and C2 domain containing 1A (Cc2d1a) gene is causally linked to ASD, and obesity has been associated with worse outcomes for ASD. High-fat diet (HFD) feeding leads to the development of obesity and metabolic dysfunction; however, the effect of HFD on pre-existing autistic-like phenotypes remains to be clarified. Here, we report that male Cc2d1a conditional knockout (cKO) mice fed with HFD, from weaning onwards and throughout the experimental period, show a marked aggravation in autistic-like phenotypes, manifested in increased restricted repetitive behaviors and impaired performance in the preference for social novelty, but not in sociability and cognitive impairments assessed using the object location memory, novel object recognition, and Morris water maze tests. HFD feeding also results in increased numbers of reactive microglia and astrocytes, and exacerbates reductions in dendritic complexity and spine density of hippocampal CA1 pyramidal neurons. Furthermore, we demonstrate that chronic treatment with minocycline, a semisynthetic tetracycline-derived antibiotic, rescues the observed behavioral and morphological deficits in Cc2d1a cKO mice fed with HFD. Collectively, these findings highlight an aggravating role of HFD in pre-existing autistic-like phenotypes and suggest that minocycline treatment can alleviate abnormal neuronal morphology and behavioral symptoms associated with ASD resulted from the interplay between genetic and environmental risk factors.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Proteínas de Ligação a DNA , Animais , Masculino , Camundongos , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Minociclina , Obesidade , Comportamento Social , Proteínas de Ligação a DNA/metabolismo
4.
PLoS Pathog ; 18(8): e1010692, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939498

RESUMO

Herpes simplex virus 1 (HSV-1)-induced encephalitis is the most common cause of sporadic, fatal encephalitis in humans. HSV-1 has at least 10 different envelope glycoproteins, which can promote virus infection. The ligands for most of the envelope glycoproteins and the significance of these ligands in virus-induced encephalitis remain elusive. Here, we show that glycoprotein E (gE) binds to the cellular protein, annexin A1 (Anx-A1) to enhance infection. Anx-A1 can be detected on the surface of cells permissive for HSV-1 before infection and on virions. Suppression of Anx-A1 or its receptor, formyl peptide receptor 2 (FPR2), on the cell surface and gE or Anx-A1 on HSV-1 envelopes reduced virus binding to cells. Importantly, Anx-A1 knockout, Anx-A1 knockdown, or treatments with the FPR2 antagonist reduced the mortality and tissue viral loads of infected mice. Our results show that Anx-A1 is a novel enhancing factor of HSV-1 infection. Anx-A1-deficient mice displayed no evident physiology and behavior changes. Hence, targeting Anx-A1 and FPR2 could be a promising prophylaxis or adjuvant therapy to decrease HSV-1 lethality.


Assuntos
Anexina A1 , Encefalite , Herpes Simples , Herpesvirus Humano 1 , Animais , Anexina A1/genética , Anexina A1/metabolismo , Glicoproteínas/metabolismo , Herpesvirus Humano 1/metabolismo , Humanos , Camundongos
5.
Viruses ; 14(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062313

RESUMO

Enterovirus 71 (EV71) is an etiological agent of hand foot and mouth disease and can also cause neurological complications in young children. However, there are no approved drugs as of yet to treat EV71 infections. In this study, we conducted antiviral drug screening by using a Food and Drug Administration (FDA)-approved drug library. We identified five drugs that showed dose-dependent inhibition of viral replication. Sertraline was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index among the five hits. The antiviral activity of sertraline was noted for other EV serotypes. The drug's antiviral effect is not likely associated with its approved indications as an antidepressant and its mode-of-action as a selective serotonin reuptake inhibitor. The time-of-addition assay revealed that sertraline inhibited an EV71 infection at the entry stage. We also showed that sertraline partitioned into acidic compartments, such as endolysosomes, to neutralize the low pH levels. In agreement with the findings, the antiviral effect of sertraline could be greatly relieved by exposing virus-infected cells to extracellular low-pH culture media. Ultimately, we have identified a use for an FDA-approved antidepressant in broad-spectrum EV inhibition by blocking viral entry through the alkalization of the endolysosomal route.


Assuntos
Antidepressivos/farmacologia , Antivirais/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Enterovirus/efeitos dos fármacos , Sertralina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antidepressivos/uso terapêutico , Linhagem Celular , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Infecções por Enterovirus/virologia , Doença de Mão, Pé e Boca/tratamento farmacológico , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Sertralina/uso terapêutico , Replicação Viral/efeitos dos fármacos
6.
J Biomed Sci ; 28(1): 66, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610835

RESUMO

BACKGROUND: Influenza A virus (IAV) evolves strategies to counteract the host antiviral defense for establishing infection. The influenza A virus (IAV) non-structural protein 1 (NS1) is a key viral factor shown to counteract type I IFN antiviral response mainly through targeting RIG-I signaling. Growing evidence suggests that viral RNA sensors RIG-I, TLR3, and TLR7 function to detect IAV RNA in different cell types to induce type I IFN antiviral response to IAV infection. Yet, it remains unclear if IAV NS1 can exploit a common mechanism to counteract these RNA sensing pathways to type I IFN production at once, then promoting viral propagation in the host. METHODS: Luciferase reporter assays were conducted to determine the effect of NS1 and its mutants on the RIG-I and TLR3 pathways to the activation of the IFN-ß and NF-κB promoters. Coimmunoprecipitation and confocal microscopic analyses were used to the interaction and colocalization between NS1 and TRAF3. Ubiquitination assays were performed to study the effect of NS1 and its mutants on TRAF3 ubiquitination. A recombinant mutant virus carrying NS1 E152A/E153A mutations was generated by reverse genetics for biochemical, ex vivo, and in vivo analyses to explore the importance of NS1 E152/E153 residues in targeting the RNA sensing-TRAF3-type I IFN axis and IAV pathogenicity. RESULTS: Here we report that NS1 subverts the RIG-I, TLR3, and TLR7 pathways to type I IFN production through targeting TRAF3 E3 ubiquitin ligase. NS1 harbors a conserved FTEE motif (a.a. 150-153), in which the E152/E153 residues are critical for binding TRAF3 to block TRAF3 ubiquitination and type I IFN production by these RNA sensing pathways. A recombinant mutant virus carrying NS1 E152A/E153A mutations induces higher type I IFN production ex vivo and in vivo, and exhibits the attenuated phenotype in infected mice, indicating the importance of E152/E153 residues in IAV pathogenicity. CONCLUSIONS: Together our work uncovers a novel mechanism of IAV NS1-mediated immune evasion to promote viral infection through targeting the RNA sensing-TRAF3-type I IFN axis.


Assuntos
Imunidade Inata , Vírus da Influenza A/genética , Proteínas não Estruturais Virais/genética , Proteínas Associadas aos Microtúbulos/genética , RNA Viral/genética , Fator 3 Associado a Receptor de TNF/genética
7.
Neurotherapeutics ; 18(3): 2021-2039, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34132974

RESUMO

Biallelic loss-of-function mutations in Coiled-coil and C2 domain containing 1A (CC2D1A) cause autosomal recessive intellectual disability, sometimes comorbid with other neurodevelopmental disabilities, such as autism spectrum disorder (ASD) and seizures. We recently reported that conditional deletion of Cc2d1a in glutamatergic neurons of the postnatal mouse forebrain leads to impaired hippocampal synaptic plasticity and cognitive function. However, the pathogenic origin of the autistic features of CC2D1A deficiency remains elusive. Here, we confirmed that CC2D1A is highly expressed in the cortical zones during embryonic development. Taking advantage of Cre-LoxP-mediated gene deletion strategy, we generated a novel line of Cc2d1a conditional knockout (cKO) mice by crossing floxed Cc2d1a mice with Emx1-Cre mice, in which CC2D1A is ablated specifically in glutamatergic neurons throughout all embryonic and adult stages. We found that CC2D1A deletion leads to a trend toward decreased number of cortical progenitor cells at embryonic day 12.5 and alters the cortical thickness on postnatal day 10. In addition, male Cc2d1a cKO mice display autistic-like phenotypes including self-injurious repetitive grooming and aberrant social interactions. Loss of CC2D1A also results in decreased complexity of apical dendritic arbors of medial prefrontal cortex (mPFC) layer V pyramidal neurons and increased synaptic excitation/inhibition (E/I) ratio in the mPFC. Notably, chronic treatment with minocycline rescues behavioral and morphological abnormalities, as well as E/I changes, in male Cc2d1a cKO mice. Together, these findings indicate that male Cc2d1a cKO mice recapitulate autistic-like phenotypes of human disorder and suggest that minocycline has both structural and functional benefits in treating ASD.


Assuntos
Transtorno Autístico/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/deficiência , Interação Social , Animais , Animais Recém-Nascidos , Transtorno Autístico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Proteínas Repressoras/genética
8.
Biochem Biophys Res Commun ; 530(3): 487-493, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32595041

RESUMO

Gout is an inflammatory arthritis caused by the phagocytosis of monosodium urate (MSU) crystal deposition in joints. NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome-dependent caspase-1 activation is implicated in the processing of interleukin-1ß (IL-1ß), which is the major effector cytokine in the acute inflammatory response of gout. Mechanisms underlying caspase-1 activation remain unclear. Epidermal growth factor receptor pathway substrate no. 8 (Eps8) is a signal transducer and actin filament organizer that plays a key role in lipopolysaccharide-stimulated phagocytosis in macrophages. Here, RAW264.7 macrophages that have no intact NLRP3 inflammasomes were used to investigate the role of Eps8 in MSU crystal-mediated caspase-1 activation. A kinetic study revealed that the induction of Eps8 expression by MSU crystals occurred before NLRP3, p46/p33 caspase-1, and mature IL-1ß in RAW 264.7 cells. In addition, actin cytoskeleton dynamics was required for Eps8 induction and caspase-1 activation in MSU crystal stimulation. Silencing Eps8 had no effect on the basal expression of p46/p33 caspase-1 and NLRP3, but nearly abolished MSU crystal-induced NLRP3 expression and caspase-1 activation. Furthermore, MSU crystals induced Eps8-pro-caspase-1 complex formation and Eps8 formed a stable complex with p33 caspase-1, but not with NLRP3. In summary, our results demonstrated for the first time the importance of Eps8 in MSU crystal-mediated caspase-1 activation without the involvement of NLRP3 inflammasomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caspase 1/metabolismo , Gota/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Gota/patologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Células RAW 264.7
9.
J Biomed Sci ; 26(1): 95, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31787104

RESUMO

Enterovirus A71 (EV-A71) is a growing threat to public health, particularly in the Asia-Pacific region. EV-A71 infection is most prevalent in infants and children and causes a wide spectrum of clinical complications, including hand-foot-and-mouth disease (HFMD), pulmonary and neurological disorders. The pathogenesis of EV-A71 infection is poorly understood at present. It is likely that viral factors and host immunity, and their interplay, affect the pathogenesis and outcome of EV-A71 infection. The mammalian innate immune system forms the first layer of defense against viral infections and triggers activation of adaptive immunity leading to full protection. In this review, we discuss recent advances in our understanding of the interaction between EV-A71 and the innate immune system. We discuss the role of pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and inflammasomes, in the detection of EV-A71 infection and induction of antiviral immunity. As a counteraction, EV-A71 viral proteins target multiple innate immune pathways to facilitate viral replication in host cells. These novel insights at the virus-host interphase may support the future development of vaccines and therapeutics against EV-A71 infection.


Assuntos
Enterovirus Humano A/fisiologia , Infecções por Enterovirus/imunologia , Imunidade Inata , Humanos , Sistema Imunitário/virologia , Replicação Viral/imunologia
10.
Genes Genomics ; 41(12): 1505-1516, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31587147

RESUMO

BACKGROUND: To study the essential molecular mechanism of gall formation is very important. OBJECTIVE: To investigate the differential gene expression in leaves fed on by Tetraneura akinire Sasaki and to provide a basis for the better understanding of the essential molecular mechanism of gall formation. METHODS: The infected leaves of the elm were divided into three periods: initial formation period (T2), growth and differentiation period (T3), and cracking period (T4). The untouched leaves were used as the control (T1). RNA-Seq was performed, and the high-quality sequences were mapped to the reference genome and the elm gene database to obtain the gene expression profiles. The expression level of each gene was calculated by the RPKM method. A combination of FDR ≤ 0.01 and the absolute value of |log2 ratio (T/CK)| ≥ 2 was used as the threshold to determine the significance of gene expression. Finally, GO and pathway enrichment analyses were used to identify the significantly enriched functional classification and metabolic pathways in DEGs. RESULTS: The results revealed that approximately 244 mRNAs were detected between T1 and T2, including 192 up-regulated and 52 down-regulated mRNAs; approximately 175 mRNAs were detected between T1 and T3, including 145 up-regulated and 30 down-regulated mRNAs; and approximately 372 mRNAs were detected between T1 and T4, including 360 up-regulated and 12 down-regulated mRNAs. Approximately 34 differentially expressed genes were identified by Venn analysis. Comparing the three infection periods to the control, there were 28 up-regulated and six down-regulated mRNAs. Additionally, 562 genes were used for cluster analysis, which revealed that the gene expression in T2 and T3 changed greatly. Genes related to cell proliferation and respiration, such as microtubulin and 6-phosphoric acid fructose kinase were mainly up-regulated during the T2 period. Genes encoding lipoxygenase, glutathione-S-transferase, superoxide dismutase and protease inhibitor were up-regulated during T2 and T3. Genes encoding lignocellulose synthase were up-regulated during T4, which suggests the reinforcement of the cell wall to improve the resistance to the damage of the Tetraneura akinire Sasaki. CONCLUSIONS: The results showed that the feeding of Tetraneura akinire Sasaki caused the differential expression of elm genes and influenced cellular energy metabolism. These changes in physiological response and gene expression of the elm compose the physiological and molecular basis of the gall formation and may improve the resistance of elm to Tetraneura akinire Sasaki.


Assuntos
Afídeos/fisiologia , Tumores de Planta/genética , Ulmus/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ulmus/metabolismo
11.
Am J Physiol Renal Physiol ; 317(7): F30-F42, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969802

RESUMO

Liddle syndrome is an inherited form of human hypertension caused by increasing epithelial Na+ channel (ENaC) expression. Increased Na+ retention through ENaC with subsequent volume expansion causes hypertension. In addition to ENaC, the Na+-K+-Cl- cotransporter (NKCC) and Na+-Cl- symporter (NCC) are responsible for Na+ reabsorption in the kidneys. Several Na+ transporters are evolutionarily regulated by the Ste20 kinase family. Ste20-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 phosphorylate downstream NKCC2 and NCC to maintain Na+ and blood pressure (BP) homeostasis. Mammalian Ste20 kinase 3 (MST3) is another member of the Ste20 family. We previously reported that reduced MST3 levels were found in the kidneys in spontaneously hypertensive rats and that MST3 was involved in Na+ regulation. To determine whether MST3 is involved in BP stability through Na+ regulation, we generated a MST3 hypomorphic mutation and designated MST3+/- and MST3-/- mice to examine BP and serum Na+ and K+ concentrations. MST3-/- mice exhibited hypernatremia, hypokalemia, and hypertension. The increased ENaC in the kidney played roles in hypernatremia. The reabsorption of more Na+ promoted more K+ secretion in the kidney and caused hypokalemia. The hypernatremia and hypokalemia in MST3-/- mice were significantly reversed by the ENaC inhibitor amiloride, indicating that MST3-/- mice reabsorbed more Na+ through ENaC. Furthermore, Madin-Darby canine kidney cells stably expressing kinase-dead MST3 displayed elevated ENaC currents. Both the in vivo and in vitro results indicated that MST3 maintained Na+ homeostasis through ENaC regulation. We are the first to report that MST3 maintains BP stability through ENaC regulation.


Assuntos
Canais Epiteliais de Sódio/fisiologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Pressão Sanguínea/fisiologia , Condutividade Elétrica , Canais Epiteliais de Sódio/análise , Genótipo , Rim/química , Síndrome de Liddle/fisiopatologia , Camundongos , Camundongos Knockout , Potássio/sangue , Potássio/urina , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/deficiência , Sódio/sangue , Sódio/urina
12.
J Neurosci ; 39(25): 4959-4975, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30992372

RESUMO

Coiled-coil and C2 domain containing 1A (CC2D1A) is an evolutionarily conserved protein, originally identified as a nuclear factor-κB activator through a large-scale screen of human genes. Mutations in the human Cc2d1a gene result in autosomal recessive nonsyndromic intellectual disability. It remains unclear, however, how Cc2d1a mutation leads to alterations in brain function. Here, we have taken advantage of Cre/loxP recombinase-based strategy to conditionally delete Cc2d1a exclusively from excitatory neurons of male mouse forebrain to examine its role in hippocampal synaptic plasticity and cognitive function. We confirmed the expression of CC2D1A protein and mRNA in the mouse hippocampus. Double immunofluorescence staining showed that CC2D1A is expressed in both excitatory and inhibitory neurons of the adult hippocampus. Conditional deletion of Cc2d1a (cKO) from excitatory neurons leads to impaired performance in object location memory test and altered anxiety-like behavior. Consistently, cKO mice displayed a deficit in the maintenance of LTP in the CA1 region of hippocampal slices. Cc2d1a deletion also resulted in decreased complexity of apical and basal dendritic arbors of CA1 pyramidal neurons. An enhanced basal Rac1 activity was observed following Cc2d1a deletion, and this enhancement was mediated by reduced SUMO-specific protease 1 (SENP1) and SENP3 expression, thus increasing the amount of Rac1 SUMOylation. Furthermore, partial blockade of Rac1 activity rescued impairments in LTP and object location memory performance in cKO mice. Together, our results implicate Rac1 hyperactivity in synaptic plasticity and cognitive deficits observed in Cc2d1a cKO mice and reveal a novel role for CC2D1A in regulating hippocampal synaptic function.SIGNIFICANCE STATEMENT CC2D1A is abundantly expressed in the brain, but there is little known about its physiological function. Taking advantage of Cc2d1a cKO mice, the present study highlights the importance of CC2D1A in the maintenance of LTP at Schaffer collateral-CA1 synapses and the formation of hippocampus-dependent long-term object location memory. Our findings establish a critical link between elevated Rac1 activity, structural and synaptic plasticity alterations, and cognitive impairment caused by Cc2d1a deletion. Moreover, partial blockade of Rac1 activity rescues synaptic plasticity and memory deficits in Cc2d1a cKO mice. Such insights may have implications for the utility of Rac1 inhibitors in the treatment of intellectual disability caused by Cc2d1a mutations in human patients.


Assuntos
Cognição/fisiologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas Repressoras/genética , Memória Espacial/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteínas Repressoras/metabolismo
13.
Viruses ; 10(12)2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563052

RESUMO

Enterovirus A71 (EV-A71) has emerged as a major pathogen causing hand, foot, and mouth disease, as well as neurological disorders. The host immune response affects the outcomes of EV-A71 infection, leading to either resolution or disease progression. However, the mechanisms of how the mammalian innate immune system detects EV-A71 infection to elicit antiviral immunity remain elusive. Here, we report that the Toll-like receptor 3 (TLR3) is a key viral RNA sensor for sensing EV-A71 infection to trigger antiviral immunity. Expression of TLR3 in HEK293 cells enabled the cells to sense EV-A71 infection, leading to type I, IFN-mediated antiviral immunity. Viral double-stranded RNA derived from EV-A71 infection was a key ligand for TLR3 detection. Silencing of TLR3 in mouse and human primary immune cells impaired the activation of IFN-ß upon EV-A71 infection, thus reinforcing the importance of the TLR3 pathway in defending against EV-A71 infection. Our results further demonstrated that TLR3 was a target of EV-A71 infection. EV-A71 protease 2A was implicated in the downregulation of TLR3. Together, our results not only demonstrate the importance of the TLR3 pathway in response to EV-A71 infection, but also reveal the involvement of EV-A71 protease 2A in subverting TLR3-mediated antiviral defenses.


Assuntos
Cisteína Endopeptidases/imunologia , Enterovirus Humano A/imunologia , RNA Viral/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Células Cultivadas , Regulação para Baixo , Enterovirus Humano A/enzimologia , Inativação Gênica , Células HEK293 , Humanos , Imunidade Inata , Interferon beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA de Cadeia Dupla/imunologia , Receptor 3 Toll-Like/genética
14.
Int Urol Nephrol ; 50(12): 2299-2307, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30328087

RESUMO

Defective renal salt and water excretion, together with increased salt intake, frequently contributes to hypertension. Recent studies indicate that Ste20 family kinases, such as proline-alanine-rich Ste20-related kinase (SPAK) and oxidative stress-response protein 1 (OSR1), are regulators of cell volume, ion transport, and hypertension. The aim of this study was to investigate whether mammalian sterile 20-like protein kinase 3 (MST3), which is also a stress-regulated kinase, is involved in the development of hypertension. MST3 expression was compared in Wistar-Kyoto (WKY) and spontaneously hypertensive rat (SHR) kidneys. MST3 expression was markedly reduced in principal cells of the collecting ducts from the renal inner medulla of SHR. The downregulation of MST3 expression was observed before and after the onset of hypertension in SHR. Mice fed high-salt diets (HS) exhibited a significant increase in MST3 protein level. This is the first study reporting that MST3, a Ste20-like kinase, exerts a conserved regulatory role in sodium homeostasis after high-salt diet and in the development of hypertension.


Assuntos
Pressão Sanguínea/genética , Homeostase/genética , Hipertensão/genética , Proteínas Serina-Treonina Quinases/genética , Desequilíbrio Hidroeletrolítico/genética , Animais , Cães , Regulação para Baixo , Expressão Gênica , Hipertensão/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sódio/metabolismo , Sódio na Dieta/administração & dosagem
15.
Exp Lung Res ; 43(8): 283-292, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29140133

RESUMO

AIM: Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. MATERIALS AND METHODS: Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. RESULTS: Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. CONCLUSIONS: ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Indóis/farmacologia , Artéria Pulmonar/citologia , Tiazóis/farmacologia , Células Cultivadas , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Células Endoteliais/citologia , Humanos , Receptores de Hidrocarboneto Arílico/análise , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Tempo
16.
Sci Rep ; 6: 35343, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748405

RESUMO

Toll-like receptor 4 (TLR4) plays a pivotal role in the host response to lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria. Here, we elucidated whether the endocytic adaptor protein Disabled-2 (Dab2), which is abundantly expressed in macrophages, plays a role in LPS-stimulated TLR4 signaling and trafficking. Molecular analysis and transcriptome profiling of RAW264.7 macrophage-like cells expressing short-hairpin RNA of Dab2 revealed that Dab2 regulated the TLR4/TRIF pathway upon LPS stimulation. Knockdown of Dab2 augmented TRIF-dependent interferon regulatory factor 3 activation and the expression of subsets of inflammatory cytokines and interferon-inducible genes. Dab2 acted as a clathrin sponge and sequestered clathrin from TLR4 in the resting stage of macrophages. Upon LPS stimulation, clathrin was released from Dab2 to facilitate endocytosis of TLR4 for triggering the TRIF-mediated pathway. Dab2 functions as a negative immune regulator of TLR4 endocytosis and signaling, supporting a novel role for a Dab2-associated regulatory circuit in controlling the inflammatory response of macrophages to endotoxin.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Biotinilação , Clatrina/metabolismo , Endotoxinas , Inflamação , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Sepse/microbiologia , Transdução de Sinais
17.
J Inorg Biochem ; 160: 33-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27118027

RESUMO

The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Tirosina/metabolismo , Vanadatos/farmacologia , Sequência de Aminoácidos , Animais , Cães , Ensaios Enzimáticos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Cinética , Células Madin Darby de Rim Canino , Concentração Osmolar , Fosforilação/efeitos dos fármacos , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
18.
Drug Alcohol Depend ; 159: 66-71, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26684867

RESUMO

BACKGROUND: Methamphetamine (METH) is an addictive psychostimulant and has been shown to induce oxidative stress and inflammation in various tissues. Thioredoxin-1 (Trx-1) plays the roles in regulating redox and inhibiting inflammation. Whether Trx-1 is involved in METH-induced inflammation is still unknown. METHODS: The present study was designed to investigate inflammatory factors in spleen of wild type and Trx-1 overexpression transgenic mice after METH treatment. RESULTS: We found the mRNA level of Trx-1 was decreased and mRNA level of Trx-1 binding protein-2 (TBP-2) was increased. The mRNA levels of tumor necrosis factor-α (TNF-α), interferon-γ(IFN-γ), interleukin-2 (IL-2), T-bet and signal transducer and activators of transcription 4 (STAT 4) were increased and the mRNA levels of IL-10, GA-TA-binding protein-3 (GATA-3) and STAT 6 were decreased. Overexpression of Trx-1 reversed the above effects induced by METH. CONCLUSION: The present study showed for the first time that Trx-1 overexpression suppressed the inflammation induced by METH.


Assuntos
Inflamação/induzido quimicamente , Inflamação/metabolismo , Metanfetamina/efeitos adversos , Baço/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Animais , Proteínas de Transporte/biossíntese , Estimulantes do Sistema Nervoso Central/efeitos adversos , Fator de Transcrição GATA3/biossíntese , Inflamação/genética , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-2/biossíntese , Camundongos , Camundongos Transgênicos , Fatores de Transcrição STAT/biossíntese , Baço/efeitos dos fármacos , Proteínas com Domínio T/biossíntese , Tiorredoxinas/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
19.
Clin Cancer Res ; 21(24): 5601-11, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26286913

RESUMO

PURPOSE: Mass spectrometry-based biomarker discovery has clinical benefit. To identify novel biomarkers for urothelial carcinoma, we performed quantitative proteomics on pooled urine pairs from patients with and without urothelial carcinoma. EXPERIMENTAL DESIGN: Shot-gun proteomics using liquid chromatography-tandem mass spectrometry and stable isotope dimethyl labeling identified 219 candidate proteins. The potential implication of SH3 domain binding glutamic acid-rich protein like 3 (SH3BGRL3) was examined by immunoblotting of the urine (n = 13) and urothelial tumors (n = 32). Additional immunohistochemistry was performed on bladder cancer array (n = 1145) and correlated with tumor aggressiveness. Then, biologic functions and signaling pathways of SH3BGRL3 were explored using stable cell lines. RESULTS: The detectable urine SH3BGRL3 in patients with urothelial carcinoma was positively associated with higher histologic grading and muscle invasiveness of urothelial carcinoma. SH3BGRL3 is expressed in 13.9% (159/1145) of bladder cancer cohort and is positively associated with muscle invasion (P = 0.0028). SH3BGRL3 expression is associated with increased risk of progression in patients with nonmuscle-invasive bladder cancer (P = 0.032). SH3BGRL3 expression is significantly associated with a high level of epidermal growth factor receptor (EGFR) in bladder cancer (P < 0.0001). SH3BGRL3 promotes the epithelial-mesenchymal transition, cell migration, and proliferation of urothelial carcinoma in vitro. SH3BGRL3 interacts with phosphor-EGFR at Y1068, Y1086, and Y1173 through Grb2 by its proline-rich motif, and activates the Akt-associated signaling pathway. CONCLUSIONS: Evaluation of SH3BGRL3 expression status or urine content may identify a subset of patients with bladder cancer who may require more intensive treatment. SH3BGRL3 deserves further investigation as a cotargeting candidate for designing EGFR-based cancer therapies. Clin Cancer Res; 21(24); 5601-11. ©2015 AACR.


Assuntos
Biomarcadores Tumorais , Peptídeos e Proteínas de Sinalização Intracelular/urina , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/urina , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Linhagem Celular Tumoral , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/metabolismo , Expressão Gênica , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Modelos Moleculares , Gradação de Tumores , Estadiamento de Neoplasias , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/urina , Prognóstico , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/urina , Ligação Proteica , Proteoma , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Neoplasias Urológicas/genética , Neoplasias Urológicas/metabolismo
20.
J Virol ; 88(19): 11264-70, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031345

RESUMO

UNLABELLED: Herpes simplex virus 1 (HSV-1) establishes latency in neurons of the brains and sensory ganglia of humans and experimentally infected mice. The latent virus can reactivate to cause recurrent infection. Both primary and recurrent infections can induce diseases, such as encephalitis. In humans, the majority of encephalitis cases occur as a recurrent infection. However, in the past, numerous mouse studies documented that viral reactivation occurs efficiently in the ganglion, but extremely rarely in the brain, when assessed ex vivo by cultivating minced tissue explants. Here, we compare the brains and the trigeminal ganglia of mice latently infected with HSV-1 (strain 294.1 or McKrae) for levels of viral genomes and in vivo reactivation. The numbers of copies of 294.1 and McKrae genomes in the brain stem were significantly greater than those in the trigeminal ganglion. Most importantly, 294.1 and McKrae reactivation was detected in the brain stems earlier than in the trigeminal ganglia of mice treated with hyperthermia to reactivate latent virus in vivo. In addition, the brain stem yielded reactivated virus at a high frequency compared with the trigeminal ganglion, especially in mice latently infected with 294.1 after hyperthermia treatment. These results provide evidence that recurrent brain infection can be induced by the reactivation of latent virus in the brain in situ. IMPORTANCE: Herpes simplex virus 1 (HSV-1) establishes latency in neurons of the brains and sensory ganglia of humans and experimentally infected mice. The latent virus can reactivate to cause recurrent infection. In the past, studies of viral reactivation focused on the ganglion, because efficient viral reactivation was detected in the ganglion but not in the brain when assessed ex vivo by cultivating mouse tissue explants. In this study, we report that the brain contains more viral genomes than the trigeminal ganglion in latently infected mice. Notably, the brain yields reactivated virus early and efficiently compared with the trigeminal ganglion after mice are stimulated to reactivate latent virus. Our findings raise the potential importance of HSV-1 latent infection and reactivation in the brain.


Assuntos
Tronco Encefálico/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Gânglio Trigeminal/virologia , Ativação Viral/fisiologia , Animais , Chlorocebus aethiops , Febre/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Células Vero , Carga Viral , Latência Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA