Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(7): e2305396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797184

RESUMO

Efficient manufacture of electroactive vertically-oriented nanosheets with enhanced electrolyte mass diffusion and strong interfacial redox dynamics is critical for realizing high energy density of miniature supercapacitor (SC), but still challenging. Herein, microfluidic droplet printing is developed to controllably construct vertically-oriented graphene/ZIF-67 hetero-microsphere (VAGS/ZIF-67), where the ZIF-67 is coordinately grown on vertically-oriented graphene framework via Co─O─C bonds. The VAGS/ZIF-67 shows ordered porous channel, high electroactivity and strong interfacial interaction, providing rapid electrolyte diffusion dynamics and high faradaic capacitance in KOH solution (1674 F g-1 , 1004 C g-1 ), which are verified by computational fluid dynamics (CFD) and density functional theory (DFT). Moreover, the VAGS/ZIF-67 based SC exhibits large energy density (100 Wh kg-1 ), excellent durability (10 000 cycles and high/low temperature), and robust power-supply applications in portable electronics.

2.
ACS Appl Mater Interfaces ; 15(19): 22915-22928, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37155948

RESUMO

Ideal joint wound dressings should not only promote wound healing and have good mechanical properties including stretchability and adhesion but also possess functions such as sterilization or motion monitoring. The multiple characteristic requirements have greatly limited the material's alternative, resulting in research on functional joint wound dressings falling far short of market demand. Therefore, low-cost, comprehensive designs need to be developed. Herein, inspired by the spiral arteries in the endometrium, alginate-based helical fibers were introduced into polyacrylamide/gelatin (PAM-Gel) to obtain composite polymer membranes, realizing a combination of both mechanical and functional properties. Large scale (100 m) and high-throughput (10 times higher than literature) fabrication of helical microfibers were first achieved, ensuring the low cost of fiber preparation. The composite film had adequate stretchability (>300% strain), adhesion strength (14 kPa), high transparency, and good biocompatibility. The helical fibers could be easily functionalized without affecting the mechanical properties of the dressings, thus broadening the range of materials available for joint dressings. After different treatments of the helical fibers, controlled drug release and joint motion monitoring were realized. Therefore, this helical microfiber composite membrane design achieved low-cost preparation, good mechanical properties, and functionalities including healing promotion, drug release, and motion monitoring ability, demonstrating application potential.


Assuntos
Adesivos , Cicatrização , Feminino , Humanos , Bandagens , Polímeros , Hidrogéis
3.
ACS Appl Mater Interfaces ; 13(49): 59392-59399, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851622

RESUMO

Due to the unique spiral geometry, different functional helical fibers are fabricated to perform vital tasks, including cargo transportation, medical treatment, cell manipulation, and so on. Although microfluidic techniques are widely used to fabricate helical fibers, the problems of channel blockage and spinning instability have not been well solved, which limits the mass preparation and practical application of spiral microfibers. In addition, the spinning mechanism is simply limited to liquid rope coiling, which has little impact on the design of microfluidic devices. Here, new types of microfluidic devices, which were easy to make and exhibited excellent spiral spinning performance, were designed. It was found that adding a sleeve layer outside the inner core needle in a coaxial microfluidic device could effectively promote the stable formation of helical microfibers. This novel microchannel could fabricate helical microfibers of more than 100 m in length continuously at one time with almost no blockage or deformation, and the key parameters of the fibers could be precisely adjusted. Combined with micro-particle image velocimetry (micro-PIV) measurements, it was confirmed that the improvement in the spinning performances was mainly attributed to the emergence of a focusing flow in the presence of the sleeve layer. After loading magnetic nanoparticles, the helical microfibers exhibited excellent motion manipulation capabilities, which showed great potential for drug delivery, cargo transportation, clogging removal, etc. This new design not only realized the high-throughput fabrication of helical microfibers but also provided deeper insights into the underlying mechanisms of spiral generation and new ideas for the design of microfluidic devices.

4.
Small ; 16(6): e1906357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913575

RESUMO

Multiphase microfluidics enables an alternative approach with many possibilities in studying, analyzing, and manufacturing functional materials due to its numerous benefits over macroscale methods, such as its ultimate controllability, stability, heat and mass transfer capacity, etc. In addition to its immense potential in biomedical applications, multiphase microfluidics also offers new opportunities in various industrial practices including extraction, catalysis loading, and fabrication of ultralight materials. Herein, aiming to give preliminary guidance for researchers from different backgrounds, a comprehensive overview of the formation mechanism, fabrication methods, and emerging applications of multiphase microfluidics using different systems is provided. Finally, major challenges facing the field are illustrated while discussing potential prospects for future work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA