Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308579, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38048537

RESUMO

Chemical bath deposited (CBD) SnO2 is one of the most prevailing electron transport layers for realizing high-efficiency perovskite solar cells (PSCs) so far. However, the state-of-the-art CBD SnO2 process is time-consuming, contradictory to its prospect in industrialization. Herein, a simplified yet efficient method is developed for the fast deposition of SnO2 electrodes by incorporating a concentrated Sn source stabilized by the ethanol ligand with antimony (Sb) doping. The higher concentration of Sn source promotes the deposition rate, and Sb doping improves the hole-blocking capability of the CBD SnO2 layer so that its target thickness can be reduced to further save the deposition time. As a result, the deposition time can be appreciably reduced from 3-4 h to only 5 min while maintaining 95% of the maximum efficiency, indicating the power of the method toward high-throughput production of efficient PSCs. Additionally, the CBD SnO2 substrates are recyclable after removing the upper layers of complete PSCs, and the refurbished PSCs can maintain ≈98% of their initial efficiency after three recycling-and-fabrication processes.

3.
Adv Mater ; 35(1): e2206047, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36303523

RESUMO

Solution processable semiconductors like organics and emerging lead halide perovskites (LHPs) are ideal candidates for photovoltaics combining high performance and flexibility with reduced manufacturing cost. Moreover, the study of hybrid semiconductors would lead to advanced structures and deep understanding that will propel this field even further. Herein, a novel device architecture involving block copolymer/perovskite hybrid bulk heterointerfaces is investigated, such a modification could enhance light absorption, create an energy level cascade, and provides a thin hydrophobic layer, thus enabling enhanced carrier generation, promoting energy transfer and preventing moisture invasion, respectively. The resulting hybrid block copolymer/perovskite solar cell exhibits a champion efficiency of 24.07% for 0.0725 cm2 -sized devices and 21.44% for 1 cm2 -sized devices, respectively, together with enhanced stability, which is among the highest reports of organic/perovskite hybrid devices. More importantly, this approach has been effectively extended to other LHPs with different chemical compositions like MAPbI3 and CsPbI3 , which may shed light on the design of highly efficient block copolymer/perovskite hybrid materials and architectures that would overcome current limitations for realistic application exploration.

4.
Comput Intell Neurosci ; 2022: 3003810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965754

RESUMO

As the core component of permanent magnet motor, the magnetic tile defects seriously affect the quality of industrial motor. Automatic recognition of the surface defects of the magnetic tile is a difficult job since the patterns of the defects are complex and diverse. The existing defect recognition methods result in difficulty in practical application due to the complicated system structure and the low accuracy of the image segmentation and the target detection for the diversity of the defect patterns. A self-supervised learning (SSL) method, which benefits from its nonlinear feature extraction performance, is proposed in this study to improve the existing approaches. We proposed an efficient multihead self-attention method, which can automatically locate single or multiple defect areas of magnetic tile and extract features of the magnetic tile defects. We also designed an accurate full-connection classifier, which can accurately classify different defects of magnetic tile defects. A knowledge distillation process without labeling is proposed, which simplifies the self-supervised training process. The process of our method is as follows. A feature extraction model consists of standard vision transformer (ViT) backbone, which is trained by contrast learning without labeled dataset that is used to extract global and local features from the input magnetic tile images. Then, we use a full-connection neural network, which is trained by using labeled dataset to classify the known defect types. Finally, we combined the feature extraction model and defect classification model together to form a relatively simple integrated system. The public magnetic tile surface defect dataset, which holds 5 defect categories and 1 nondefect category, is used in the process of training, validating, and testing. We also use online data augmentation techs to increase training samples to make the model converge and achieve high classification accuracy. The experimental results show that the features extracted by the SSL method can get richer and more detailed features than the supervised learning model gets. The composite model reaches to a high testing accuracy of 98.3%, and gains relatively strong robustness and good generalization ability.


Assuntos
Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Atenção , Fenômenos Magnéticos
5.
Adv Mater ; 34(2): e2105977, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34695259

RESUMO

The solution-processed solar cells based on colloidal quantum dots (QDs) reported so far generally suffer from poor thickness tolerance and it is difficult for them to be compatible with large-scale solution printing technology. However, the recently emerged perovskite QDs, with unique high defect tolerance, are particularly well-suited for efficient photovoltaics. Herein, efficient CsPbI3 perovskite QD solar cells are demonstrated first with over 1 µm-thick active layer by developing an internal P/N homojunction. Specifically, an organic dopant 2,2'-(perfluoronaphthalene-2,6-diylidene) dimalononitrile (F6TCNNQ) is introduced into CsPbI3 QD arrays to prepare different carrier-type QD arrays. The detailed characterizations reveal successful charge-transfer doping of QDs and carrier-type transformation from n-type to p-type. Subsequently, the P/N homojunction perovskite QD solar cell is assembled using different carrier-type QDs, delivering an enhanced power conversion efficiency of 15.29%. Most importantly, this P/N homojunction strategy realizes remarkable thickness tolerance of QD solar cells, showing a record high efficiency of 12.28% for a 1.2 µm-thick QD active-layer and demonstrating great potential for the future printing manufacturing of QDs solar cells.

6.
Angew Chem Int Ed Engl ; 60(52): 27299-27306, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34716638

RESUMO

α-Formamidinium lead iodide (α-FAPbI3 ) is one of the most promising candidate materials for high-efficiency and thermally stable perovskite solar cells (PSCs) owing to its outstanding optoelectrical properties and high thermal stability. However, achieving a stable form of α-FAPbI3 where both the composition and the phase are pure is very challenging. Herein, we report on a combined strategy of precursor engineering and grain anchoring to successfully prepare methylammonium (MA)-free and phase-pure stable α-FAPbI3 films. The incorporation of volatile FA-based additives in the precursor solutions completely suppresses the formation of non-perovskite δ-FAPbI3 during film crystallization. Grains of the desired α-phase are anchored together and stabilized when 4-tert-butylbenzylammonium iodide is permeated into the α-FAPbI3 film interior via grain boundaries. This cooperative scheme leads to a significantly increased efficiency close to 21 % for FAPbI3 perovskite solar cells. Moreover, the stabilized PSCs exhibit improved thermal stability and maintained ≈90 % of their initial efficiency after storage at 50 °C for over 1600 hours.

7.
Nat Commun ; 12(1): 4381, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282133

RESUMO

Almost all surfaces sensitive to the ambient environment are covered by water, whereas the impacts of water on surface-dominated colloidal quantum dot (CQD) semiconductor electronics have rarely been explored. Here, strongly hydrogen-bonded water on hydroxylated lead sulfide (PbS) CQD is identified. The water could pilot the thermally induced evolution of surface chemical environment, which significantly influences the nanostructures, carrier dynamics, and trap behaviors in CQD solar cells. The aggravation of surface hydroxylation and water adsorption triggers epitaxial CQD fusion during device fabrication under humid ambient, giving rise to the inter-band traps and deficiency in solar cells. To address this problem, meniscus-guided-coating technique is introduced to achieve dense-packed CQD solids and extrude ambient water, improving device performance and thermal stability. Our works not only elucidate the water involved PbS CQD surface chemistry, but may also achieve a comprehensive understanding of the impact of ambient water on CQD based electronics.

8.
Adv Mater ; 32(32): e2000449, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32609406

RESUMO

Lead-halide perovskite quantum dots (PQDs) or more broadly, nanocrystals possess advantageous features for solution-processed photovoltaic devices. The nanocrystal surface ligands play a crucial role in the transport of photogenerated carriers and ultimately affect the overall performance of PQD solar cells. Significantly improved CsPbI3 PQD synthetic yield and solar-cell performance through surface ligand management are demonstrated. The treatment of a secondary amine, di-n-propylamine (DPA), provides a mild and efficient approach to control the surface ligand density of PQDs, which has an apparently different working mechanism compared to previously reported surface treatments. Using an optimal DPA concentration, the treatment can simultaneously remove both long-chain insulating surface ligands of oleic acid and oleylamine, even for unpurified PQDs with high ligand density. As a result, the electrical coupling between PQDs is enhanced, leading to improved charge transport, reduced carrier recombination, and a high power conversion efficiency approaching 15% for CsPbI3 -PQD-based solar cells. In addition, the production yield of CsPbI3 PQDs can be increased by a factor of 8. These results highlight the importance of developing new ligand-management strategies, specifically for emerging PQDs to achieve scalable and high-performance perovskite-based optoelectronic devices.

9.
ACS Appl Mater Interfaces ; 12(24): 27307-27315, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32452206

RESUMO

As effective light absorbers in solar cells, CsPbI3 all-inorganic perovskite quantum dots (QDs) have received increasing attention, benefitting from their suitable optical band gap and thermal stability. However, the easy cubic to yellow orthorhombic phase transition hinders their further application in stable photovoltaic devices. CsPbBr3 QDs have been targeted as a promising material for ultrahigh voltage and stable solar cells. In this work, we first develop a simple yet efficient post-treatment method using guanidinium thiocyanate (GASCN), which is able to exchange the native capping ligands of CsPbBr3 QDs, thus improving the carrier transport properties through enhanced electrical coupling between QDs. Additionally, the morphology and crystalline properties of solid QD films are also improved. Therefore, simultaneously improved open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) were obtained in the corresponding CsPbBr3 QD devices. Finally, the QD solar cells based on optimal hole-transporting layers delivered the highest efficiency exceeding 5% together with an ultrahigh Voc of 1.65 V, representing the most efficient CsPbBr3 QD solar cells to date. More importantly, the CsPbBr3 perovskite QD solar cells developed here exhibit excellent stability, ultrahigh voltage, and high transparency over the entire visible spectrum region, demonstrating their great potential in applications like solar windows of greenhouse and hydrogen generation driven by perovskite solar cells.

10.
Adv Mater ; 32(26): e2001906, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32449221

RESUMO

Metal halide perovskite quantum dots (Pe-QDs) are of great interest in new-generation photovoltaics (PVs). However, it remains challenging in the construction of conductive and intact Pe-QD films to maximize their functionality. Herein, a ligand-assisted surface matrix strategy to engineer the surface and packing states of Pe-QD solids is demonstrated by a mild thermal annealing treatment after ligand exchange processing (referred to as "LE-TA") triggered by guanidinium thiocyanate. The "LE-TA" method induces the formation of surface matrix on CsPbI3 QDs, which is dominated by the cationic guanidinium (GA+ ) rather than the SCN- , maintaining the intact cubic structure and facilitating interparticle electrical interaction of QD solids. Consequently, the GA-matrix-confined CsPbI3 QDs exhibit remarkably enhanced charge mobility and carrier diffusion length compared to control ones, leading to a champion power conversion efficiency of 15.21% when assembled in PVs, which is one of the highest among all Pe-QD solar cells. Additionally, the "LE-TA" method shows similar effects when applied to other Pe-QD PV systems like CsPbBr3 and FAPbI3 (FA = formamidinium), indicating its versatility in regulating the surfaces of various Pe-QDs. This work may afford new guidelines to construct electrically conductive and structurally intact Pe-QD solids for efficient optoelectronic devices.

11.
Nat Commun ; 10(1): 5136, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723126

RESUMO

Lead sulphide (PbS) nanocrystals (NCs) are promising materials for low-cost, high-performance optoelectronic devices. So far, PbS NCs have to be first synthesized with long-alkyl chain organic surface ligands and then be ligand-exchanged with shorter ligands (two-steps) to enable charge transport. However, the initial synthesis of insulated PbS NCs show no necessity and the ligand-exchange process is tedious and extravagant. Herein, we have developed a direct one-step, scalable synthetic method for iodide capped PbS (PbS-I) NC inks. The estimated cost for PbS-I NC inks is decreased to less than 6 $·g-1, compared with 16 $·g-1 for conventional methods. Furthermore, based on these PbS-I NCs, photodetector devices show a high detectivity of 1.4 × 1011 Jones and solar cells show an air-stable power conversion efficiency (PCE) up to 10%. This scalable and low-cost direct preparation of high-quality PbS-I NC inks may pave a path for the future commercialization of NC based optoelectronics.

12.
ACS Appl Mater Interfaces ; 10(49): 42397-42405, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30422618

RESUMO

It is well known that tailoring the interfacial structure is very important for perovskite solar cells, especially for its performance and stability. Here, we report a universal and versatile method of modulating the energetic alignment between the perovskite and hole-transporting layer by introducing a multifunctional dipole layer based on metallophthalocyanine derivatives copperphthalocyanine (CuPc) or highly fluorinated copper hexadecafluorophthalocyanine (F16CuPc). Both molecules were introduced through an "antisolution" process to treat the surface of organic-inorganic CH3NH3PbI3 perovskite. The dipole layer can well align the interfacial energy levels, passivate the CH3NH3PbI3 surface, and fill the grain boundaries, resulting in greatly suppressed charge recombination. As a result, our planar CH3NH3PbI3 perovskite devices exhibit the best power conversion efficiency of 20.2%, with significantly enhanced open-circuit voltages ( Voc) of 1.112 V (CuPc) and 1.145 V (F16CuPc), which is a record high Voc value for CH3NH3PbI3 thin-film solar cells. More importantly, the use of highly fluorinated F16CuPc produces a significantly more hydrophobic surface, leading to drastically improved long-term stability under ambient conditions. We believe that our study offers a general approach to making multifunctional dipole layers, which are necessary for achieving both stable and efficient perovskite solar cells.

13.
Adv Mater ; 30(16): e1704871, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29543986

RESUMO

Current efforts on lead sulfide quantum dot (PbS QD) solar cells are mostly paid to the device architecture engineering and postsynthetic surface modification, while very rare work regarding the optimization of PbS synthesis is reported. Here, PbS QDs are successfully synthesized using PbO and PbAc2  ·â€†3H2 O as the lead sources. QD solar cells based on PbAc-PbS have demonstrated a high power conversion efficiency (PCE) of 10.82% (and independently certificated values of 10.62%), which is significantly higher than the PCE of 9.39% for PbO-PbS QD based ones. For the first time, systematic investigations are carried out on the effect of lead precursor engineering on the device performance. It is revealed that acetate can act as an efficient capping ligands together with oleic acid, providing better surface coverage and replace some of the harmful hydroxyl (OH) ligands during the synthesis. Then the acetate on the surface can be exchanged by iodide and lead to desired passivation. This work demonstrates that the precursor engineering has great potential in performance improvement. It is also pointed out that the initial synthesis is an often neglected but critical stage and has abundant room for optimization to further improve the quality of the resultant QDs, leading to breakthrough efficiency.

14.
ACS Appl Mater Interfaces ; 10(3): 2776-2784, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29314821

RESUMO

A widely applicable doping design for emerging nonfullerene solar cells would be an efficient strategy in order to further improve device photovoltaic performance. Herein, a family of compound TBAX (TBA= tetrabutylammonium, X = F, Cl, Br, or I, containing Lewis base anions are considered as efficient n-dopants for improving polymer-polymer solar cells (all-PSCs) performance. In all cases, significantly increased fill factor (FF) and slightly increased short-circuit current density (Jsc) are observed, leading to a best PCE of 7.0% for all-PSCs compared to that of 5.8% in undoped devices. The improvement may be attributed to interaction between different anions X- (X = F, Cl, Br, and I) in TBAX with the polymer acceptor. We reveal that adding TBAX at relatively low content does not have a significantly impact on blend morphology, while it can reduce the work function (WF) of the electron acceptor. We find this simple and solution processable n-type doping can efficiently restrain charge recombination in all-polymer solar cell devices, resulting in improved FF and Jsc. More importantly, our findings may provide new protocles and insights using n-type molecular dopants in improving the performance of current polymer-polymer solar cells.

15.
ACS Appl Mater Interfaces ; 9(27): 23181-23188, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28627165

RESUMO

In this work, we demonstrate high-efficiency planar perovskite solar cells (PSCs), using room-temperature sputtered niobium oxide (Nb2O5) as the electron-transporting layer (ETL). Widely spread ETL-like TiO2 often requires high-temperature (>450 °C) sintering, which is not desired for the fabrication of flexible devices. The amorphous Nb2O5 (labeled as a-Nb2O5) ETL, without any heat treatment, can give a best power conversion efficiency (PCE) of 17.1% for planar PSCs. Interestingly, the crystalline Nb2O5 (labeled as c-Nb2O5), with high-temperature (500 °C) annealing, results in a very similar PCE of 17.2%, indicating the great advantage of a-Nb2O5 in energy saving. We thus carried out a systematical investigation on the properties of the a-Nb2O5 film. The Hall effect measurements indicate both high mobility and conductivity of the a-Nb2O5 film. Kelvin probe force microscopy measurements define the Fermi levels of a-Nb2O5 and c-Nb2O5 as -4.31 and -4.02 eV, respectively, which allow efficient electron extraction at the Nb2O5/perovskite interface, regardless of the additional heat treatment on Nb2O5 film. Benefitting from the low-temperature process, we further demonstrated flexible PSCs based on a-Nb2O5, with a considerable PCE of 12.1%. The room-temperature processing and relatively high device performance of a-Nb2O5 suggest a great potential for its application in optoelectrical devices.

16.
ACS Appl Mater Interfaces ; 9(15): 13396-13405, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28368094

RESUMO

We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA