Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(14): 7046-7055, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39070673

RESUMO

Modern technologies that can replace state-of-the-art Li-ion batteries (LIBs), such as Na-ion batteries (NIBs), are currently driving new advancements in energy storage research. Developing functional active materials having sustainable features and enhanced performances able to assess their exploitation in the large-scale market represents a major challenge. Rationally designed P2-type layered transition metal (TM) oxides can enable high-energy NIB cathodes, where the tailored composition directly tunes the electrochemical and structural properties. Such positive electrodes need stable electrolytes, and exploration of unconventional room-temperature ionic liquid (RTIL)-based formulations paves the route toward safer options to flammable organic solvents. Notwithstanding the fact that Li+ doping in these materials has been proposed as a viable strategy to improve structural issues, an in-depth understanding of structure-property relationship as well as electrochemical testing with innovative RTIL-based electrolytes is still missing. Herein, we propose the solid-state synthesis of P2-Na0.84Li0.1Ni0.27Mn0.63O2 (NLNMO) cathode material, which exhibits promising structural reversibility and superior capacity retention upon cycling when tested in combination with RTIL-based electrolytes (EMI-, PYR14-, and N1114-FSI) compared to the standard NaClO4/PC. As unveiled from DFT calculations, lattice integrity is ensured by the reduced Jahn-Teller distortion upon Na removal exerted by Mn4+ and Li+ sublattices, while the good redox reversibility is mainly associated with the electrochemically active Ni2+/Ni3+/Ni4+ series burdening the charge compensation upon desodiation. By declaring the electrochemical compatibility of the P2-NLNMO cathode with three RTIL-based electrolytes and dissecting the role of Li/Ni/Mn sublattices in determining the electrochemical behavior, our comprehensive study enlightens the potential application of this electrode/electrolyte setup for future high-energy NIB prototype cells.

2.
Macromol Rapid Commun ; 45(16): e2400184, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923196

RESUMO

Poly(ionic liquid)s combine the unique properties of ionic liquids (ILs) within ionic polymers holding significant promise for energy storage applications. It is reported here the synthesis and characterization of a new family of poly(ionic liquid)s synthesized from cationic piperazinium ionic liquid monomers. The cationic poly(acrylamide piperazinium) in combination with sulfonamide anions like bis(trifluoromethanesulfonyl) imide (TFSI) and bis(fluorosulfonyl) imide (FSI) are characterized as solid polymer electrolytes. The polymer electrolytes in combination with pyrrolidonium ILs and LiFSI show high ionic conductivity, 5×10-3 S cm-1 at 100 °C. Piperazinium polymer electrolytes show excellent compatibility with lithium metal reversible plating and stripping at high current density and low temperature 40 °C.


Assuntos
Fontes de Energia Elétrica , Eletrólitos , Líquidos Iônicos , Lítio , Polímeros , Líquidos Iônicos/química , Lítio/química , Eletrólitos/química , Polímeros/química , Polímeros/síntese química , Piperazinas/química , Estrutura Molecular
3.
ACS Mater Au ; 3(5): 528-539, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38089092

RESUMO

Hybrid solid polymer electrolytes (HSPE) comprising poly(ethylene oxide) (PEO), LiTFSI, barium titanate (BaTiO3), and viologen are prepared by a facile hot press. The physical properties of the HSPE membranes are studied by using small-angle and wide-angle X-ray scattering, thermogravimetric analysis, differential scanning calorimetry, and tensile strength. The prepared hybrid solid polymer electrolytes are also investigated by means of ionic conductivity and transport number measurements. The employed analyses collectively reveal that each additive in the PEO host contributes to a specific property: LiTFSI is essential in providing ionic species, while BaTiO3 and viologen enhance the thermal stability, ionic conductivity, and transport number. The enhanced value in the Li+-transport number of HSPE are presumably attributed to the electrostatic attraction of TFSI anions and the positive charges of viologen. Synergistically, the added BaTiO3 and viologen improve the electrochemical properties of HSPE for the applications in all-solid-state-lithium polymer batteries.

4.
Macromolecules ; 54(14): 6911-6924, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34475591

RESUMO

Safety and high-voltage operation are key metrics for advanced, solid-state energy storage devices to power low- or zero-emission HEV or EV vehicles. In this study, we propose the modification of single-ion conducting polyelectrolytes by designing novel block copolymers, which combine one block responsible for high ionic conductivity and the second block for improved mechanical properties and outstanding electrochemical stability. To synthesize such block copolymers, the ring opening polymerization (ROP) of trimethylene carbonate (TMC) monomer by the RAFT-agent having a terminal hydroxyl group is used. It allows for the preparation of a poly(carbonate) macro-RAFT precursor that is subsequently applied in RAFT copolymerization of lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide and poly(ethylene glycol) methyl ether methacrylate. The resulting single-ion conducting block copolymers show improved viscoelastic properties, good thermal stability (T onset up to 155 °C), sufficient ionic conductivity (up to 3.7 × 10-6 S cm-1 at 70 °C), and high lithium-ion transference number (0.91) to enable high power. Excellent plating/stripping ability with resistance to dendrite growth and outstanding electrochemical stability window (exceeding 4.8 V vs Li+/Li at 70 °C) are also achieved, along with enhanced compatibility with composite cathodes, both LiNiMnCoO2 - NMC and LiFePO4 - LFP, as well as the lithium metal anode. Lab-scale truly solid-state Li/LFP and Li/NMC lithium-metal cells assembled with the single-ion copolymer electrolyte demonstrate reversible and very stable cycling at 70 °C delivering high specific capacity (up to 145 and 118 mAh g-1, respectively, at a C/20 rate) and proper operation even at a higher current regime. Remarkably, the addition of a little amount of propylene carbonate (∼8 wt %) allows for stable, highly reversible cycling at a higher C-rate. These results represent an excellent achievement for a truly single-ion conducting solid-state polymer electrolyte, placing the obtained ionic block copolymers on top of polyelectrolytes with highest electrochemical stability and potentially enabling safe, practical Li-metal cells operating at high-voltage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA