Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 12(7): 21, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37490305

RESUMO

Purpose: Morphological changes to the optic nerve head (ONH) can be detected at the early stages of glaucoma. Three-dimensional imaging and analysis may aid in the diagnosis. Light field (LF) fundus cameras can generate three-dimensional (3D) images of optic disc topography from a single shot and are less susceptible to motion artifacts. Here, we introduce a processing method to determine diagnostically relevant ONH parameters automatically and present the results of a subject study performed to validate this method. Methods: The ONHs of 17 healthy subjects were examined and images were acquired with both an LF fundus camera and by optical coherence tomography (OCT). The LF data were analyzed with a novel algorithm and compared with the results of the OCT study. Depth information was reconstructed, and a model with radial basis functions was used for processing of the 3D point cloud and to provide a finite surface. The peripapillary rising and falling edges were evaluated to determine optic disc and cup contours and finally calculate the parameters. Results: Nine of the 17 subjects exhibited prominent optic cups. The contours and ONH parameters determined by an analysis of LF 3D imaging largely agreed with the data obtained from OCT. The median disc areas, cup areas, and cup depths differed by 0.17 mm², -0.04 mm², and -0.07 mm, respectively. Conclusions: The findings presented here suggest the possibility of using LF data to evaluate the ONH. Translational Relevance: LF data can be used to determine geometric parameters of the ONH and thus may be suitable for future use in glaucoma diagnostics.


Assuntos
Glaucoma , Disco Óptico , Humanos , Fundo de Olho , Algoritmos , Voluntários Saudáveis
4.
Adv Sci (Weinh) ; 9(36): e2204077, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36333123

RESUMO

Transfusion of packed red blood cells (pRBCs) saves lives, but iron overload limits survival of chronically transfused patients. Quality control methods, which involve entering pRBC units and removing them from the blood supply, reveal that hemoglobin (38.5-79.9 g) and heme iron (133.42-276.89 mg) vary substantially between pRBCs. Yet, neither hemoglobin nor iron content can be quantified for individual clinically used pRBCs leading to rules of thumb for pRBC transfusions. Keeping their integrity, the authors seek to predict hemoglobin/iron content of any given pRBC unit applying eight machine learning models on 6,058 pRBCs. Based on thirteen features routinely collected during blood donation, production and quality control testing, the model with best trade-off between performance and complexity in hemoglobin/iron content prediction is identified. Validation of this model in an independent cohort of 2637 pRBCs confirms an adjusted R2 > 0.9 corresponding to a mean absolute prediction error of ≤1.43 g hemoglobin/4.96 mg iron (associated standard deviation: ≤1.13 g hemoglobin/3.92 mg iron). Such unprecedented precise prediction enables reliable pRBC dosing per pharmaceutically active agent, and monitoring iron uptake in patients and individual iron loss in donors. The model is implemented in a free open source web application to facilitate clinical application.


Assuntos
Transfusão de Eritrócitos , Ferro , Humanos , Transfusão de Eritrócitos/métodos , Hemoglobinas , Eritrócitos
5.
J Biomed Opt ; 26(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34921542

RESUMO

SIGNIFICANCE: Light-field fundus photography has the potential to be a new milestone in ophthalmology. Up-to-date publications show only unsatisfactory image quality, preventing the use of depth measurements. We show that good image quality and, consequently, reliable depth measurements are possible, and we investigate the current challenges of this novel technology. AIM: We investigated whether light field (LF) imaging of the retina provides depth information, on which structures the depth is estimated, which illumination wavelength should be used, whether deeper layers are measurable, and what kinds of artifacts occur. APPROACH: The technical setup, a mydriatic fundus camera with an LF imager, and depth estimation were validated by an eye model and in vivo measurements of three healthy subjects and three subjects with suspected glaucoma. Comparisons between subjects and the corresponding optical coherence tomography (OCT) measurements were used for verification of the depth estimation. RESULTS: This LF setup allowed for three-dimensional one-shot imaging and depth estimation of the optic disc with green light. In addition, a linear relationship was found between the depth estimates of the OCT and those of the setup developed here. This result is supported by the eye model study. Deeper layers were not measurable. CONCLUSIONS: If image artifacts can be handled, LF technology has the potential to help diagnose and monitor glaucoma risk at an early stage through a rapid, cost-effective one-shot technology.


Assuntos
Disco Óptico , Retina , Angiofluoresceinografia , Humanos , Retina/diagnóstico por imagem , Tecnologia , Tomografia de Coerência Óptica
6.
Transl Vis Sci Technol ; 10(14): 4, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854893

RESUMO

Purpose: To technically validate a novel pneumatically based system and method for modulation of intraocular pressure (IOP) and to test its application in the human eye. Special attention was paid to the applicability of the pneumatically driven balloon, which realizes the modulation of the IOP through its contact with the conjunctiva. Methods: A force sensor as key component of a customized measurement setup was used to check the applied pressure through the balloon. The IOP of 10 healthy subjects (4 female, 6 male, aged 28.8 ± 6.64 years) was modulated and increased linearly to at least 40 mmHg. At this point, the pressure inside the balloon was kept constant for 2 minutes, with IOP measurements taken every 40 seconds using a rebound tonometer. Results: The technical setup led to an IOP decrease of 0.71 mmHg within 2 minutes at an operating point of 40 mmHg. For all subjects, the IOP could be increased up to 42.8 ± 3.6 mmHg, whereby a mean pressure decrease of 2.4 mmHg/min was determined, which seems to be caused mainly by physiological processes. Conclusions: With the new pneumatically based setup, a targeted modulation in terms of level and constancy of the IOP can be realized. Translational Relevance: Additional and, compared with the technique according to Löw, a more precise and more constant methodology for the modulation of the IOP, can significantly simplify the determination of retinal vessel pressures for clinical application. It is suitable for practical questions concerning an enhanced retinal venous pressure.


Assuntos
Oftalmopatias , Pressão Intraocular , Feminino , Humanos , Masculino , Retina , Tonometria Ocular , Pressão Venosa
8.
Front Hum Neurosci ; 13: 371, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695600

RESUMO

Recent studies indicate therapeutic benefits of electrical stimulation in cases of specific ophthalmic diseases that are associated with dysfunctional ocular microcirculation. This suggests effects of electrical stimulation on vascular functions. In the present study, we investigated the effects of electrical stimulation on retinal vessel reactions using dynamic vessel analysis (DVA). Eighty healthy subjects were randomly assigned to one of three groups receiving electrical stimulation with different current intensities: 400 µA (n = 26); 800 µA (n = 27); 1200 µA (n = 27). The electrode montage for electrical stimulation consisted of a ring-shaped active electrode surrounding one eye and a square return electrode at the occiput. Rectangular, monophasic, positive current pulses were applied at 10 Hz for a duration of 60 s per stimulation period. DVA was used to observe the stimulation-induced reactions of retinal vessel diameters in response to different provocations. In three DVA measurements, three stimulus conditions were investigated: flicker light stimulation (FLS); electrical stimulation (ES); simultaneous electrical and flicker light stimulation (ES+FLS). Retinal vasodilation caused by these stimuli was compared using paired t-test. The subjects receiving electrical stimulation with 800 µA showed significantly increased retinal vasodilation for ES+FLS compared to FLS (p < 0.05). No significant differences in retinal vessel reactions were found between ES+FLS and FLS in the 400 and 1200 µA groups. No retinal vasodilation was observed for ES for all investigated current intensities. The results indicate that positive pulsed electrical stimulation of an adequate intensity enhances the flicker light-induced retinal vasodilation.

9.
PLoS One ; 14(4): e0214850, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947303

RESUMO

PURPOSE: Psychophysical measurements are used to examine the perception of ocular stray light, for example, with C-Quant. These measurements are subjective due to their principles. This work aims to determine ocular stray light objectively; thus, a psychophysical method is transferred into an electrophysiological setup. METHODS: Stray light perception was measured using steady-state visual evoked potentials (VEPs) in 10 healthy subjects (7 males, 3 females, mean age ± SD: 29.6 ± 4.1 years). Stray light emulating filters (Tiffen Black Pro Mist 2) were used for simulating the effect of cataracts to validate the results for increased scattered light conditions. Based on the direct compensation method, the stimulus consisted of a central test field (radius = 2°) with a luminance adjustable compensation light and surrounding ring-shaped stray light source (radius = 5 to 10°). Both flickered in the counter phase at a frequency of 7.5 Hz. The stimuli were presented for 15 luminance levels of the compensation light. The recorded steady-state VEPs at Oz channel were transformed by means of Fourier analysis. The magnitudes at the evoked frequency were plotted against the measured brightness levels of the compensation light. By fitting two linear functions to the resulting data points, a robust minimum log(Leq) was determined, which was correlated with the amount of stray light perception. We measured the stray light parameter log(sc) using C-Quant. For comparison, our results were converted into the C-Quant equivalent parameter log(sepm) and paired t-tests were performed for normal distributed results. RESULTS: A significant difference is observed between log(sepm) (without filter) and log(sepm) (with BPM 2 Filter) (p>0.05). No significant difference is observed between log(sepm) (without filter) and log(sc) (without filter) (p > 0.05) and between log(sepm) (with BPM 2 filter) and log(sc) (with BPM 2 filter) (p > 0.05). CONCLUSION: The electrophysiological approach offers the ability to measure stray light perception in an objective manner.


Assuntos
Potenciais Evocados Visuais/fisiologia , Visão Ocular/fisiologia , Adulto , Eletroencefalografia , Fenômenos Eletrofisiológicos , Feminino , Humanos , Luz , Masculino , Fenômenos Fisiológicos Oculares , Estimulação Luminosa , Psicofísica , Espalhamento de Radiação , Adulto Jovem
10.
Biomed Opt Express ; 10(3): 1446-1461, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30891358

RESUMO

This study investigates the influence of photopigment bleaching on autofluorescence lifetimes in the fundus in 21 young healthy volunteers. Three measurements of 30° retinal fields in two spectral channels (SSC: 498-560 nm, LSC: 560-720 nm) were obtained for each volunteer using fluorescence lifetime imaging ophthalmoscopy (FLIO). After dark-adaptation by wearing a custom-made lightproof mask for 30 minutes, the first FLIO-measurement was recorded (dark-adapted state). Subsequently, the eye was bleached for 1 minute (luminance: 3200 cd/m2), followed by a second FLIO-measurement (bleached state). Following an additional 10 minute dark adaptation using the mask, a final FLIO-measurement was recorded (recovered state). Average values of the fluorescence lifetimes were calculated from within different areas of a standardized early treatment diabetic retinopathy study (ETDRS) grid (central area, inner and outer rings). The acquisition time in the bleached state was significantly shortened by approximately 20%. The SSC did not show any significant changes in fluorescence lifetimes with photopigment bleaching, only the LSC showed small but significant bleaching-related changes in the fluorescence lifetimes τ1 and τ2 from all regions, as well as the mean fluorescence lifetime in the central area. The fluorescence lifetime differences caused by bleaching were by far less significant than pathological changes caused by eye diseases. The magnitudes of fluorescence lifetime changes are <10% and do not interfere with healthy or disease related FLIO patterns. Thus, we conclude that bleaching is not a relevant confounder in current clinical applications of FLIO.

11.
Optom Vis Sci ; 95(12): 1120-1128, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30451808

RESUMO

SIGNIFICANCE: This article shows a successful concept for simulating central scotoma, which is associated with age-related macular degeneration (AMD), in healthy subjects by an induced dark spot at the retina using occlusive contact lenses. The new concept includes a control mechanism to adjust the scotoma size through controlling pupil size without medication. Therefore, a miniaturized full-field adaptation device was used. PURPOSE: The aim of this study was to design a novel concept to simulate AMD scotoma in healthy subjects using occlusive contact lenses. METHODS: To define an optimal set of lens parameters, we constructed an optical model and considered both the anatomical pupil diameter and the opaque central zone diameter of the contact lens. To adjust the scotoma size, we built a miniaturized full-field adaptation device. We demonstrate the validity of this novel concept by functional measurements of visual fields using automated threshold perimetry. Finally, we conducted a perception study including two tasks, consisting of pictograms and letters. The stimuli were presented at different eccentricities and magnifications. RESULTS: The visual fields of all 10 volunteers exhibited absolute scotomas. The loss of contrast sensitivity ranged within 27 and 36 dB (P < .05), and the scotoma localizations were nearly centered to the macula (mean variation, 2.0 ± 4.8° horizontally; 3.5 ± 4.7° vertically). The eccentric perception of letters showed the largest numbers of correctly identified stimuli. The perception of pictograms showed significantly reduced numbers (P < .0001) and revealed a dependency on magnification. The results suggest that best perception is possible for magnified stimuli near the scotoma. CONCLUSIONS: We demonstrated that the creation of an absolute simulated AMD scotoma is possible using occlusive contact lenses combined with a miniaturized full-field adaptation device.


Assuntos
Sensibilidades de Contraste/fisiologia , Degeneração Macular/fisiopatologia , Modelos Biológicos , Retina/fisiopatologia , Escotoma/fisiopatologia , Campos Visuais/fisiologia , Adulto , Lentes de Contato , Feminino , Voluntários Saudáveis , Humanos , Masculino , Simulação de Paciente , Testes de Campo Visual
12.
Biomed Opt Express ; 7(9): 3198-3210, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27699092

RESUMO

Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes determined from the intensity decays. Here, we present a new technique to suppress the autofluorescence of the crystalline lens by introducing an annular stop into the detection light path, which we call Schweitzer's principle. The efficacy of annular stops with an outer diameter of 7 mm and inner diameters of 1 to 5 mm are analyzed in an experimental setup using a model eye based on fluorescent dyes. Compared to the confocal principle, Schweitzer's principle with an inner diameter of 3 mm is able to reduce the simulated crystalline lens fluorescence to 4%, while 42% of the simulated retina fluorescence is preserved. Thus, we recommend the implementation of Schweitzer's principle in scanning laser ophthalmoscopes used for fundus autofluorescence measurements, especially the FLIO device, for improved image quality.

13.
Artigo em Inglês | MEDLINE | ID: mdl-25570237

RESUMO

An optical phantom of the maternal abdomen during pregnancy is an appropriate test environment to evaluate a non-invasive system for fetal pulse oximetry. To recreate the optical properties of maternal tissue, fetal tissue and blood suitable substitutes are required. For this purpose, phantom materials are used, which consist of transparent silicone or water as host material. Cosmetic powder and India ink are investigated as absorbing materials, whereas titanium dioxide particles are examined as scattering medium. Transmittance and reflectance measurements of the samples were performed in the spectral range from 600 nm to 900 nm using integrating sphere technique. The scattering and absorption coefficients and the anisotropy factor were determined using Kubelka-Munk theory. The results were used to compute the required mixture ratios of the respective components to replicate the optical properties of maternal tissue, fetal tissue and blood, and corresponding samples were produced. Their optical properties were investigated in the same manner as mentioned above. The results conform to the values of various types of tissues and blood given in the scientific literature.


Assuntos
Feto/fisiologia , Raios Infravermelhos , Fenômenos Ópticos , Oximetria/métodos , Imagens de Fantasmas , Pulso Arterial , Anisotropia , Sangue , Carbono/química , Cosméticos , Feminino , Humanos , Pós , Gravidez , Titânio/química
14.
Biomed Opt Express ; 2(11): 3094-108, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22076270

RESUMO

We present a novel non-invasive and non-contact system for reflex-free retinal imaging and dynamic retinal vessel analysis in the rat. Theoretical analysis was performed prior to development of the new optical design, taking into account the optical properties of the rat eye and its specific illumination and imaging requirements. A novel optical model of the rat eye was developed for use with standard optical design software, facilitating both sequential and non-sequential modes. A retinal camera for the rat was constructed using standard optical and mechanical components. The addition of a customized illumination unit and existing standard software enabled dynamic vessel analysis. Seven-minute in-vivo vessel diameter recordings performed on 9 Brown-Norway rats showed stable readings. On average, the coefficient of variation was (1.1 ± 0.19) % for the arteries and (0.6 ± 0.08) % for the veins. The slope of the linear regression analysis was (0.56 ± 0.26) % for the arteries and (0.15 ± 0.27) % for the veins. In conclusion, the device can be used in basic studies of retinal vessel behavior.

15.
J Biomed Opt ; 16(1): 015002, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21280904

RESUMO

We design, characterize, and apply a novel optoelectrophysiological setup for a fundus-controlled silent substitution technique that accounts for interindividual variability in retina morphology and simultaneously monitors the stimulation site under investigation. We connect a digital color liquid crystal on silicon projector, an electron-multiplying imager, and a light-emitting diode to a fundus camera. The temporal and spatial characterization reveal a maximal contrast loss of 7% for the highest stimulation frequency (30 Hz) and maximum cutoff spatial frequencies of ∼120 cycles∕deg. Two silent substitution flash sequences are applied to modulate selective activity in the short-wavelength-sensitive cone (S-cone) and combined long- and middle-wavelength-sensitive cone (LM-cone) pathways. Simultaneously, the visual evoked potentials are recorded. The data are compared to the grand average responses from a previous study that employed standard computer-screen presentation and showed very good latency matches. All the volunteers in the present examination exhibit differences between the S-cone and LM-cone evoked potentials (parameters mean values: peak-to-peak amplitude, N1 latency, and P1 latency for S-cone∕LM-cone responses: 8 µV∕15 µV, 113 ms∕89 ms, 170 ms∕143 ms). We demonstrate that the developed optoelectrophysiological setup simultaneously provides imaging, functional stimulation, and electrophysiological investigation of the retina.


Assuntos
Testes de Percepção de Cores/instrumentação , Defeitos da Visão Cromática/diagnóstico , Eletroencefalografia/instrumentação , Oftalmoscópios , Estimulação Luminosa/instrumentação , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA