Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 697549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456972

RESUMO

PURPOSE: Congenital hypopituitarism usually occurs sporadically. In most patients, the etiology remains unknown. METHODS: We studied 13 children with sporadic congenital hypopituitarism. Children with non-endocrine, non-familial idiopathic short stature (NFSS) (n = 19) served as a control group. Exome sequencing was performed in probands and both unaffected parents. A burden testing approach was used to compare the number of candidate variants in the two groups. RESULTS: First, we assessed the frequency of rare, predicted-pathogenic variants in 42 genes previously reported to be associated with pituitary gland development. The average number of variants per individual was greater in probands with congenital hypopituitarism than those with NFSS (1.1 vs. 0.21, mean variants/proband, P = 0.03). The number of probands with at least 1 variant in a pituitary-associated gene was greater in congenital hypopituitarism than in NFSS (62% vs. 21%, P = 0.03). Second, we assessed the frequency of rare, predicted-pathogenic variants in the exome (to capture undiscovered causes) that were inherited in a fashion that could explain the sporadic occurrence of the proband's condition with a monogenic etiology (de novo mutation, autosomal recessive, or X-linked recessive) with complete penetrance. There were fewer monogenic candidates in the probands with congenital hypopituitarism than those with NFSS (1.3 vs. 2.5 candidate variants/proband, P = 0.024). We did not find any candidate variants (0 of 13 probands) in genes previously reported to explain the phenotype in congenital hypopituitarism, unlike NFSS (8 of 19 probands, P = 0.01). CONCLUSION: Our findings provide evidence that the etiology of sporadic congenital hypopituitarism has a major genetic component but may be infrequently monogenic with full penetrance, suggesting a more complex etiology.

2.
Mol Genet Genomic Med ; 2(6): 530-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25614875

RESUMO

Whole-genome sequencing and whole-exome sequencing are becoming more widely applied in clinical medicine to help diagnose rare genetic diseases. Identification of the underlying causative mutations by genome-wide sequencing is greatly facilitated by concurrent analysis of multiple family members, most often the mother-father-proband trio, using bioinformatics pipelines that filter genetic variants by mode of inheritance. However, current pipelines are limited to Mendelian inheritance patterns and do not specifically address disorders caused by mutations in imprinted genes, such as forms of Angelman syndrome and Beckwith-Wiedemann syndrome. Using publicly available tools, we implemented a genetic inheritance search mode to identify imprinted-gene mutations. Application of this search mode to whole-genome sequences from a family trio led to a diagnosis for a proband for whom extensive clinical testing and Mendelian inheritance-based sequence analysis were nondiagnostic. The condition in this patient, IMAGe syndrome, is likely caused by the heterozygous mutation c.832A>G (p.Lys278Glu) in the imprinted gene CDKN1C. The genotypes and disease status of six members of the family are consistent with maternal expression of the gene, and allele-biased expression was confirmed by RNA-Seq for the heterozygotes. This analysis demonstrates that an imprinted-gene search mode is a valuable addition to genome sequence analysis pipelines for identifying disease-causative variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA