Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 127(8): e2022JA030261, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247328

RESUMO

The previous three solar cycles have ended in progressively more quiescent conditions, suggesting a continual slide into an ever deeper minimum state. Although the Sun's magnetic field is undoubtedly responsible for this quiescence, it is not clear how changes in its structure and strength modulate the properties of the solar wind. In this study, we compare the statistical properties of the solar wind during the three most recent minima (08/1996, 12/2008, and 12/2019) and develop global MHD model solutions to help interpret these observations. We find that, counter-intuitively, the statistical properties of the solar wind for the most recent minimum lie midway between the 08/1996 and 12/2008 minima. For example, while the minimum speed dropped by 40 km s-1 between 08/1996 and 12/2008, they rose by 20 km s-1 around the 12/2019 minimum. From the model results, we infer that the 12/2008 and 12/2019 minima were structurally similar to one another, with the presence of corotating interaction regions driven by equatorial coronal holes, while the 08/1996 minimum represented a more "standard" tilted dipole configuration associated with those of earlier space age minima. Comparison of the statistical properties derived from the model results with data suggest several opportunities to improve model parameters, as well as to apply more sophisticated modeling approaches. Overall, however, the model results capture the essential features of the observations and, thus, allow us to infer the global structure of the inner heliosphere, of which the in-situ measurements provide only a glimpse.

2.
Proc Int Astron Union ; 13: 247-250, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30568719

RESUMO

Both direct observations and reconstructions from various datasets, suggest that conditions were radically different during the Maunder Minimum (MM) than during the space era. Using an MHD model, we develop a set of feasible solutions to infer the properties of the solar wind during this interval. Additionally, we use these results to drive a global magnetospheric model. Finally, using the 2008/2009 solar minimum as an upper limit for MM conditions, we use results from the International Reference Ionosphere (ILI) model to speculate on the state of the ionosphere. The results describe interplanetary, magnetospheric, and ionospheric conditions that were substantially different than today. For example: (1) the solar wind density and magnetic field strength were an order of magnitude lower; (2) the Earth's magnetopause and shock standoff distances were a factor of two larger; and (3) the maximum electron density in the ionosphere was substantially lower.

3.
Astrophys J ; 856(1)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29628520

RESUMO

Solar eruptions are the main driver of space-weather disturbances at the Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 14 July 2000 "Bastille Day" eruption, which produced a very strong geomagnetic storm. After constructing a "thermodynamic" MHD model of the corona and solar wind, we insert a magnetically stable flux rope along the polarity inversion line of the eruption's source region and initiate the eruption by boundary flows. More than 1033 ergs of magnetic energy are released in the eruption within a few minutes, driving a flare, an EUV wave, and a coronal mass ejection (CME) that travels in the outer corona at ≈1500 km s-1, close to the observed speed. We then propagate the CME to Earth, using a heliospheric MHD code. Our simulation thus provides the opportunity to test how well in situ observations of extreme events are matched if the eruption is initiated from a stable magnetic-equilibrium state. We find that the flux-rope center is very similar in character to the observed magnetic cloud, but arrives ≈8.5 hours later and ≈15° too far to the North, with field strengths that are too weak by a factor of ≈1.6. The front of the flux rope is highly distorted, exhibiting localized magnetic-field concentrations as it passes 1 AU. We discuss these properties with regard to the development of space-weather predictions based on MHD simulations of solar eruptions.

4.
Space Sci Rev ; 214(5)2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32943800

RESUMO

Seven different models are applied to the same problem of simulating the Sun's coronal magnetic field during the solar eclipse on 2015 March 20. All of the models are non-potential, allowing for free magnetic energy, but the associated electric currents are developed in significantly different ways. This is not a direct comparison of the coronal modelling techniques, in that the different models also use different photospheric boundary conditions, reflecting the range of approaches currently used in the community. Despite the significant differences, the results show broad agreement in the overall magnetic topology. Among those models with significant volume currents in much of the corona, there is general agreement that the ratio of total to potential magnetic energy should be approximately 1.4. However, there are significant differences in the electric current distributions; while static extrapolations are best able to reproduce active regions, they are unable to recover sheared magnetic fields in filament channels using currently available vector magnetogram data. By contrast, time-evolving simulations can recover the filament channel fields at the expense of not matching the observed vector magnetic fields within active regions. We suggest that, at present, the best approach may be a hybrid model using static extrapolations but with additional energization informed by simplified evolution models. This is demonstrated by one of the models.

5.
PLoS Comput Biol ; 11(9): e1004392, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26402446

RESUMO

The potential rapid availability of large-scale clinical episode data during the next influenza pandemic suggests an opportunity for increasing the speed with which novel respiratory pathogens can be characterized. Key intervention decisions will be determined by both the transmissibility of the novel strain (measured by the basic reproductive number R0) and its individual-level severity. The 2009 pandemic illustrated that estimating individual-level severity, as described by the proportion pC of infections that result in clinical cases, can remain uncertain for a prolonged period of time. Here, we use 50 distinct US military populations during 2009 as a retrospective cohort to test the hypothesis that real-time encounter data combined with disease dynamic models can be used to bridge this uncertainty gap. Effectively, we estimated the total number of infections in multiple early-affected communities using the model and divided that number by the known number of clinical cases. Joint estimates of severity and transmissibility clustered within a relatively small region of parameter space, with 40 of the 50 populations bounded by: pC, 0.0133-0.150 and R0, 1.09-2.16. These fits were obtained despite widely varying incidence profiles: some with spring waves, some with fall waves and some with both. To illustrate the benefit of specific pairing of rapidly available data and infectious disease models, we simulated a future moderate pandemic strain with pC approximately ×10 that of 2009; the results demonstrating that even before the peak had passed in the first affected population, R0 and pC could be well estimated. This study provides a clear reference in this two-dimensional space against which future novel respiratory pathogens can be rapidly assessed and compared with previous pandemics.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Influenza Humana , Modelos Biológicos , Pandemias , Humanos , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos
6.
Science ; 340(6137): 1196-9, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23744941

RESUMO

On 15 and 16 December 2011, Sun-grazing comet C/2011 W3 (Lovejoy) passed deep within the solar corona, effectively probing a region that has never been visited by spacecraft. Imaged from multiple perspectives, extreme ultraviolet observations of Lovejoy's tail showed substantial changes in direction, intensity, magnitude, and persistence. To understand this unique signature, we combined a state-of-the-art magnetohydrodynamic model of the solar corona and a model for the motion of emitting cometary tail ions in an embedded plasma. The observed tail motions reveal the inhomogeneous magnetic field of the solar corona. We show how these motions constrain field and plasma properties along the trajectory, and how they can be used to meaningfully distinguish between two classes of magnetic field models.

7.
PLoS Comput Biol ; 9(5): e1003064, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696723

RESUMO

Rapidly characterizing the amplitude and variability in transmissibility of novel human influenza strains as they emerge is a key public health priority. However, comparison of early estimates of the basic reproduction number during the 2009 pandemic were challenging because of inconsistent data sources and methods. Here, we define and analyze influenza-like-illness (ILI) case data from 2009-2010 for the 50 largest spatially distinct US military installations (military population defined by zip code, MPZ). We used publicly available data from non-military sources to show that patterns of ILI incidence in many of these MPZs closely followed the pattern of their enclosing civilian population. After characterizing the broad patterns of incidence (e.g. single-peak, double-peak), we defined a parsimonious SIR-like model with two possible values for intrinsic transmissibility across three epochs. We fitted the parameters of this model to data from all 50 MPZs, finding them to be reasonably well clustered with a median (mean) value of 1.39 (1.57) and standard deviation of 0.41. An increasing temporal trend in transmissibility ([Formula: see text], p-value: 0.013) during the period of our study was robust to the removal of high transmissibility outliers and to the removal of the smaller 20 MPZs. Our results demonstrate the utility of rapidly available - and consistent - data from multiple populations.


Assuntos
Influenza Humana , Militares/estatística & dados numéricos , Modelos Biológicos , Modelos Estatísticos , Pandemias , Biologia Computacional/métodos , Humanos , Incidência , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA