Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 14(1): 5824, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37726348

RESUMO

Health disparities are driven by underlying social disadvantage and psychosocial stressors. However, how social disadvantage and psychosocial stressors lead to adverse health outcomes is unclear, particularly when exposure begins prenatally. Variations in the gut microbiome and circulating proinflammatory cytokines offer potential mechanistic pathways. Here, we interrogate the gut microbiome of mother-child dyads to compare high-versus-low prenatal social disadvantage, psychosocial stressors and maternal circulating cytokine cohorts (prospective case-control study design using gut microbiomes from 121 dyads profiled with 16 S rRNA sequencing and 89 dyads with shotgun metagenomic sequencing). Gut microbiome characteristics significantly predictive of social disadvantage and psychosocial stressors in the mothers and children indicate that different discriminatory taxa and related pathways are involved, including many species of Bifidobacterium and related pathways across several comparisons. The lowest inter-individual gut microbiome similarity was observed among high-social disadvantage/high-psychosocial stressors mothers, suggesting distinct environmental exposures driving a diverging gut microbiome assembly compared to low-social disadvantage/low-psychosocial stressors controls (P = 3.5 × 10-5 for social disadvantage, P = 2.7 × 10-15 for psychosocial stressors). Children's gut metagenome profiles at 4 months also significantly predicted high/low maternal prenatal IL-6 (P = 0.029), with many bacterial species overlapping those identified by social disadvantage and psychosocial stressors. These differences, based on maternal social and psychological status during a critical developmental window early in life, offer potentially modifiable targets to mitigate health inequities.


Assuntos
Microbioma Gastrointestinal , Feminino , Gravidez , Humanos , Lactente , Microbioma Gastrointestinal/genética , Mães , Estudos de Casos e Controles , Bifidobacterium/genética , Citocinas , Vitaminas
2.
Nat Microbiol ; 7(5): 653-662, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35449461

RESUMO

Necrotizing enterocolitis (NEC) is a serious consequence of preterm birth and is often associated with gut bacterial microbiome alterations. However, little is known about the development of the gut virome in preterm infants, or its role in NEC. Here, using metagenomic sequencing, we characterized the DNA gut virome of 9 preterm infants who developed NEC and 14 gestational age-matched preterm infants who did not. Infants were sampled longitudinally before NEC onset over the first 11 weeks of life. We observed substantial interindividual variation in the gut virome between unrelated preterm infants, while intraindividual variation over time was significantly less. We identified viral and bacterial signatures in the gut that preceded NEC onset. Specifically, we observed a convergence towards reduced viral beta diversity over the 10 d before NEC onset, which was driven by specific viral signatures and accompanied by specific viral-bacterial interactions. Our results indicate that bacterial and viral perturbations precede the sudden onset of NEC. These findings suggest that early life virome signatures in preterm infants may be implicated in NEC.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Nascimento Prematuro , Bactérias/genética , Enterocolite Necrosante/microbiologia , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , Viroma/genética
3.
Mol Genet Metab Rep ; 28: 100772, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34113546

RESUMO

INTRODUCTION: Niemann-Pick C (NPC) is an autosomal recessive disease due to defective NPC1 or NPC2 proteins resulting in endo-lysosomal storage of unesterified cholesterol in the central nervous system and liver. Acute liver disease in the newborn period may be self-limited or fatal. 2-hydroxypropyl-ß-cyclodextrin (2HPBCD) is a cholesterol-binding agent that reduces lysosomal cholesterol storage. We have enrolled 3 infants 0-6 months old with direct hyperbilirubinemia due to NPC1 or NPC2 liver disease in a Phase I/II open label clinical trial of intravenous 2HPBCD. METHODS: Infants received intravenous 2HPBCD twice a week for 6 weeks, followed by monthly infusion for 6-months. Primary outcome measure was reduction of plasma (3ß,5α,6ß-trihydroxy-cholan-24-oyl) glycine (TCG), a bile acid generated from cholesterol sequestered in lysosome. RESULTS: Three participants completed this protocol. A fourth patient received intravenous 2HPBCD under an emergency investigational new drug study but later expired from her underlying condition. The three protocol patients are living and have improved liver enzymes and TCG. No patient has experienced a drug-related adverse event. CONCLUSION: Intravenous 2HPBCD was tolerated in three infants with liver disease due to NPC.

4.
Lancet ; 387(10031): 1928-36, 2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26969089

RESUMO

BACKGROUND: Gut bacteria might predispose to or protect from necrotising enterocolitis, a severe illness linked to prematurity. In this observational prospective study we aimed to assess whether one or more bacterial taxa in the gut differ between infants who subsequently develop necrotising enterocolitis (cases) and those who do not (controls). METHODS: We enrolled very low birthweight (1500 g and lower) infants in the primary cohort (St Louis Children's Hospital) between July 7, 2009, and Sept 16, 2013, and in the secondary cohorts (Kosair Children's Hospital and Children's Hospital at Oklahoma University) between Sept 12, 2011 and May 25, 2013. We prospectively collected and then froze stool samples for all infants. Cases were defined as infants whose clinical courses were consistent with necrotising enterocolitis and whose radiographs fulfilled criteria for Bell's stage 2 or 3 necrotising enterocolitis. Control infants (one to four per case; not fixed ratios) with similar gestational ages, birthweight, and birth dates were selected from the population after cases were identified. Using primers specific for bacterial 16S rRNA genes, we amplified and then pyrosequenced faecal DNA from stool samples. With use of Dirichlet multinomial analysis and mixed models to account for repeated measures, we identified host factors, including development of necrotising enterocolitis, associated with gut bacterial populations. FINDINGS: We studied 2492 stool samples from 122 infants in the primary cohort, of whom 28 developed necrotising enterocolitis; 94 infants were used as controls. The microbial community structure in case stools differed significantly from those in control stools. These differences emerged only after the first month of age. In mixed models, the time-by-necrotising-enterocolitis interaction was positively associated with Gammaproteobacteria (p=0·0010) and negatively associated with strictly anaerobic bacteria, especially Negativicutes (p=0·0019). We studied 1094 stool samples from 44 infants in the secondary cohorts. 18 infants developed necrotising enterocolitis (cases) and 26 were controls. After combining data from all cohorts (166 infants, 3586 stools, 46 cases of necrotising enterocolitis), there were increased proportions of Gammaproteobacteria (p=0·0011) and lower proportions of both Negativicutes (p=0·0013) and the combined Clostridia-Negativicutes class (p=0·0051) in infants who went on to develop necrotising enterocolitis compared with controls. These associations were strongest in both the primary cohort and the overall cohort for infants born at less than 27 weeks' gestation. INTERPRETATION: A relative abundance of Gammaproteobacteria (ie, Gram-negative facultative bacilli) and relative paucity of strict anaerobic bacteria (especially Negativicutes) precede necrotising enterocolitis in very low birthweight infants. These data offer candidate targets for interventions to prevent necrotising enterocolitis, at least among infants born at less than 27 weeks' gestation. FUNDING: National Institutes of Health (NIH), Foundation for the NIH, the Children's Discovery Institute.


Assuntos
Disbiose/microbiologia , Enterocolite Necrosante/microbiologia , Infecções por Bactérias Gram-Negativas , Infecções por Bactérias Gram-Positivas , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Idade Gestacional , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Masculino , Estudos Prospectivos
5.
Proc Natl Acad Sci U S A ; 111(34): 12522-7, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114261

RESUMO

In the weeks after birth, the gut acquires a nascent microbiome, and starts its transition to bacterial population equilibrium. This early-in-life microbial population quite likely influences later-in-life host biology. However, we know little about the governance of community development: does the gut serve as a passive incubator where the first organisms randomly encountered gain entry and predominate, or is there an orderly progression of members joining the community of bacteria? We used fine interval enumeration of microbes in stools from multiple subjects to answer this question. We demonstrate via 16S rRNA gene pyrosequencing of 922 specimens from 58 subjects that the gut microbiota of premature infants residing in a tightly controlled microbial environment progresses through a choreographed succession of bacterial classes from Bacilli to Gammaproteobacteria to Clostridia, interrupted by abrupt population changes. As infants approach 33-36 wk postconceptional age (corresponding to the third to the twelfth weeks of life depending on gestational age at birth), the gut is well colonized by anaerobes. Antibiotics, vaginal vs. Caesarian birth, diet, and age of the infants when sampled influence the pace, but not the sequence, of progression. Our results suggest that in infants in a microbiologically constrained ecosphere of a neonatal intensive care unit, gut bacterial communities have an overall nonrandom assembly that is punctuated by microbial population abruptions. The possibility that the pace of this assembly depends more on host biology (chiefly gestational age at birth) than identifiable exogenous factors warrants further consideration.


Assuntos
Trato Gastrointestinal/microbiologia , Recém-Nascido Prematuro , Microbiota , Fatores Etários , Clostridium/genética , Clostridium/isolamento & purificação , Estudos de Coortes , Fezes/microbiologia , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Microbiota/genética , Estudos Prospectivos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
6.
Ann Am Thorac Soc ; 11(5): 753-60, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24716708

RESUMO

RATIONALE: Better phenotypic descriptions are needed for chronic lung disease among surviving premature infants. OBJECTIVES: The purpose of this study was to evaluate the potential usefulness of respiratory inductance plethysmography in characterizing respiratory system mechanics in preterm infants at 32 weeks postmenstrual age. METHODS: Respiratory inductance plethysmography was used to obtain the phase angle, Φ, to describe rib cage and abdominal dyssynchrony in 65 infants born between 23 and 28 weeks gestation, all of whom were studied at 32 weeks postmenstrual age. Up to 60 breaths were evaluated for each subject. Sources of intrasubject variability in Φ arising from our methods were explored using mechanical models and by evaluating interobserver agreement. MEASUREMENTS AND MAIN RESULTS: The mean Φ from infants ranged from 5.8-162.9°, with intrasubject coefficients of variation ranging from 11-123%. On the basis of the mechanical model studies, respiratory inductance plethysmography recording and analysis software added <2.3% to the intrasubject variability in Φ. Potential inconsistencies in breaths selected could have contributed 8.1%, on average, to the total variability. The recording sessions captured 22.8 ± 9.1 minutes of quiet sleep, and enough breaths were counted to adequately characterize the range of Φ in the session. CONCLUSION: Φ is quite variable during even short recording sessions among preterm infants sleeping quietly. The intrasubject variability described herein arises from the instability of the rib cage and abdominal phase relationship, not from the recording and analytical methods used. Despite the variability, Φ measurements allowed the majority (80%) of infants to be reliably categorized as having relatively synchronous or dyssynchronous breathing. Respiratory inductance plethysmography is easy to use and should prove useful in quantifying respiratory mechanics in multicenter studies of preterm infants.


Assuntos
Recém-Nascido Prematuro/fisiologia , Monitorização Fisiológica , Pletismografia/métodos , Respiração , Volume de Ventilação Pulmonar/fisiologia , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Curva ROC , Valores de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA