Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Hemasphere ; 8(3): e51, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463444

RESUMO

T-lineage acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that accounts for 10%-15% of pediatric and 25% of adult ALL cases. Although the prognosis of T-ALL has improved over time, the outcome of T-ALL patients with primary resistant or relapsed leukemia remains poor. Therefore, further progress in the treatment of T-ALL requires a better understanding of its biology and the development of more effective precision oncologic therapies. The proto-oncogene MYB is highly expressed in diverse hematologic malignancies, including T-ALLs with genomic aberrations that further potentiate its expression and activity. Previous studies have associated MYB with a malignant role in the pathogenesis of several cancers. However, its role in the induction and maintenance of T-ALL remains relatively poorly understood. In this study, we found that an increased copy number of MYB is associated with higher MYB expression levels, and might be associated with inferior event-free survival of pediatric T-ALL patients. Using our previously described conditional Myb overexpression mice, we generated two distinct MYB-driven T-ALL mouse models. We demonstrated that the overexpression of Myb synergizes with Pten deletion but not with the overexpression of Lmo2 to accelerate the development of T-cell lymphoblastic leukemias. We also showed that MYB is a dependency factor in T-ALL since RNA interference of Myb blocked cell cycle progression and induced apoptosis in both human and murine T-ALL cell lines. Finally, we provide preclinical evidence that targeting the transcriptional activity of MYB can be a useful therapeutic strategy for the treatment of T-ALL.

2.
Blood Adv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536906

RESUMO

TET2-mediated DNA demethylation plays a pivotal role in regulating pre-leukemic clonal expansion in acute myeloid leukemia (AML), where TET2 mutations are also linked to AML progression. However, its function in other types of leukemias, including T-cell acute lymphoblastic leukemia (T-ALL), remains unclear. Here, we used two different T-ALL mouse models to study the possible tumor suppressor role of Tet2 in pre-leukemic T-ALL. Overexpression of Tet2 resulted in a mild but significant increase in T-ALL latency in the immature CD2-Lmo2tg T-ALL mouse model, but no effect on survival was observed in the mature Lck-Cretg/+ Ptenfl/lf T-ALL mouse model. In contrast to the pre-leukemic thymocytes from CD2-Lmo2tg mice, Lck-Cretg/+ Ptenfl/fl thymi do not display self-renewal suggesting that the anti-leukemic effect of Tet2 occurs mainly in the pre-leukemic phase of T-ALL. In conclusion, we demonstrated that the Tet2 tumor suppressor function is dependent on the differentiation stage of T-ALL and limited to the pre-leukemic phase.

3.
Haematologica ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941480

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) and T cell lymphoblastic lymphoma (T-LBL) are rare aggressive hematological malignancies. Current treatment consists of intensive chemotherapy, leading to 80% overall survival but are associated with severe toxic side effects. Furthermore, 10-20% of patients still die from relapsed or refractory disease providing a strong rationale for more specific, targeted therapeutic strategies with less toxicities. Here, we report a novel MYH9::PDGFRB fusion in a T-LBL patient and demonstrate that this fusion product is constitutively active and sufficient to drive oncogenic transformation in vitro and in vivo. Expanding our analysis more broadly across T-ALL, we found a T-ALL cell line and multiple patient derived xenograft models with PDGFRB hyperactivation in the absence of a fusion, with high PDGFRB expression in TLX3 and HOXA T-ALL molecular subtypes. To target this PDGFRB hyperactivation, we evaluated the therapeutic effects of a selective PDGFRB inhibitor, CP-673451, both in vitro and in vivo and demonstrated sensitivity if the receptor is hyperactivated. Altogether, our work reveals that hyperactivation of PDGFRB is an oncogenic driver in T-ALL/T-LBL and that screening T-ALL/TLBL patients for phosphorylated PDGFRB levels can serve as a biomarker for PDGFRB inhibition as a novel targeted therapeutic strategy in their treatment regimen.

4.
Cancers (Basel) ; 15(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36765607

RESUMO

T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive lymphatic cancer, often diagnosed at a young age. Patients are treated with intensive chemotherapy, potentially followed by a hematopoietic stem cell transplantation. Although prognosis of T-LBL has improved with intensified treatment protocols, they are associated with side effects and 10-20% of patients still die from relapsed or refractory disease. Given this, the search toward less toxic anti-lymphoma therapies is ongoing. Here, we targeted the recently described DNA hypermethylated profile in T-LBL with the DNA hypomethylating agent decitabine. We evaluated the anti-lymphoma properties and downstream effects of decitabine, using patient derived xenograft (PDX) models. Decitabine treatment resulted in prolonged lymphoma-free survival in all T-LBL PDX models, which was associated with downregulation of the oncogenic MYC pathway. However, some PDX models showed more benefit of decitabine treatment compared to others. In more sensitive models, differentially methylated CpG regions resulted in more differentially expressed genes in open chromatin regions. This resulted in stronger downregulation of cell cycle genes and upregulation of immune response activating transcripts. Finally, we suggest a gene signature for high decitabine sensitivity in T-LBL. Altogether, we here delivered pre-clinical proof of the potential use of decitabine as a new therapeutic agent in T-LBL.

5.
Sci Data ; 9(1): 626, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243775

RESUMO

The holistic nature of omics studies makes them ideally suited to generate hypotheses on health and disease. Sequencing-based genomics and mass spectrometry (MS)-based proteomics are linked through epigenetic regulation mechanisms. However, epigenomics is currently mainly focused on DNA methylation status using sequencing technologies, while studying histone posttranslational modifications (hPTMs) using MS is lagging, partly because reuse of raw data is impractical. Yet, targeting hPTMs using epidrugs is an established promising research avenue in cancer treatment. Therefore, we here present the most comprehensive MS-based preprocessed hPTM atlas to date, including 21 T-cell acute lymphoblastic leukemia (T-ALL) cell lines. We present the data in an intuitive and browsable single licensed Progenesis QIP project and provide all essential quality metrics, allowing users to assess the quality of the data, edit individual peptides, try novel annotation algorithms and export both peptide and protein data for downstream analyses, exemplified by the PeptidoformViz tool. This data resource sets the stage for generalizing MS-based histone analysis and provides the first reusable histone dataset for epidrug development.


Assuntos
Histonas , Leucemia , Humanos , Epigênese Genética , Histonas/metabolismo , Espectrometria de Massas/métodos , Peptídeos/química , Processamento de Proteína Pós-Traducional , Linfócitos T/química , Leucemia-Linfoma Linfoblástico de Células T Precursoras
6.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34406363

RESUMO

Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with poor long-term overall survival. Currently, MCL research and development of potential cures is hampered by the lack of good in vivo models. MCL is characterized by recurrent translocations of CCND1 or CCND2, resulting in overexpression of the cell cycle regulators cyclin D1 or D2, respectively. Here, we show, for the first time, that hematopoiesis-specific activation of cyclin D2 is sufficient to drive murine MCL-like lymphoma development. Furthermore, we demonstrate that cyclin D2 overexpression can synergize with loss of p53 to form aggressive and transplantable MCL-like lymphomas. Strikingly, cyclin D2-driven lymphomas display transcriptional, immunophenotypic, and functional similarities with B1a B cells. These MCL-like lymphomas have B1a-specific B cell receptors (BCRs), show elevated BCR and NF-κB pathway activation, and display increased MALT1 protease activity. Finally, we provide preclinical evidence that inhibition of MALT1 protease activity, which is essential for the development of early life-derived B1a cells, can be an effective therapeutic strategy to treat MCL.


Assuntos
Ciclina D2/genética , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , Aloenxertos , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Ciclina D2/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfoma de Célula do Manto/tratamento farmacológico , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Células Neoplásicas Circulantes , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Blood Adv ; 5(7): 1963-1976, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33830207

RESUMO

B-cell lymphoma 2 (BCL-2) has recently emerged as a therapeutic target for early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL), a high-risk subtype of human T-cell ALL. The major clinical challenge with targeted therapeutics, such as the BCL-2 inhibitor ABT-199, is the development of acquired resistance. We assessed the in vivo response of luciferase-positive LOUCY cells to ABT-199 monotherapy and observed specific residual disease in the splenic microenvironment. Of note, these results were confirmed by using a primary ETP-ALL patient-derived xenograft. Splenomegaly has previously been associated with poor prognosis in diverse types of leukemia. However, the exact mechanism by which the splenic microenvironment alters responses to specific targeted therapies remains largely unexplored. We show that residual LOUCY cells isolated from the spleen microenvironment displayed reduced BCL-2 dependence, which was accompanied by decreased BCL-2 expression levels. Notably, this phenotype of reduced BCL-2 dependence could be recapitulated by using human splenic fibroblast coculture experiments and was confirmed in an in vitro chronic ABT-199 resistance model of LOUCY. Finally, single-cell RNA-sequencing was used to show that ABT-199 triggers transcriptional changes in T-cell differentiation genes in leukemic cells obtained from the spleen microenvironment. Of note, increased expression of CD1a and sCD3 was also observed in ABT199-resistant LOUCY clones, further reinforcing the idea that a more differentiated leukemic population might display decreased sensitivity toward BCL-2 inhibition. Overall, our data reveal the spleen as a site of residual disease for ABT-199 treatment in ETP-ALL and provide evidence for plasticity in T-cell differentiation as a mechanism of therapy resistance.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Baço , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33555272

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with inferior outcome compared with that of B cell ALL. Here, we show that Runt-related transcription factor 2 (RUNX2) was upregulated in high-risk T-ALL with KMT2A rearrangements (KMT2A-R) or an immature immunophenotype. In KMT2A-R cells, we identified RUNX2 as a direct target of the KMT2A chimeras, where it reciprocally bound the KMT2A promoter, establishing a regulatory feed-forward mechanism. Notably, RUNX2 was required for survival of immature and KMT2A-R T-ALL cells in vitro and in vivo. We report direct transcriptional regulation of CXCR4 signaling by RUNX2, thereby promoting chemotaxis, adhesion, and homing to medullary and extramedullary sites. RUNX2 enabled these energy-demanding processes by increasing metabolic activity in T-ALL cells through positive regulation of both glycolysis and oxidative phosphorylation. Concurrently, RUNX2 upregulation increased mitochondrial dynamics and biogenesis in T-ALL cells. Finally, as a proof of concept, we demonstrate that immature and KMT2A-R T-ALL cells were vulnerable to pharmacological targeting of the interaction between RUNX2 and its cofactor CBFß. In conclusion, we show that RUNX2 acts as a dependency factor in high-risk subtypes of human T-ALL through concomitant regulation of tumor metabolism and leukemic cell migration.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Animais , Linhagem Celular Tumoral , Quimiotaxia de Leucócito , Criança , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Progressão da Doença , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Hematopoese , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Biogênese de Organelas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais
9.
Blood ; 136(8): 957-973, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32369597

RESUMO

Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.


Assuntos
Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal/genética , Histona Desmetilases/metabolismo , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição da Família Snail/fisiologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células HEK293 , Células HL-60 , Histona Desmetilases/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Ligação Proteica , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
10.
Blood ; 135(19): 1685-1695, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32315407

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) and T-cell acute lymphoblastic lymphoma (T-LBL) are aggressive hematological malignancies that are currently treated with high-dose chemotherapy. Over the last several years, the search toward novel and less-toxic therapeutic strategies for T-ALL/T-LBL patients has largely focused on the identification of cell-intrinsic properties of the tumor cell. However, non-cell-autonomous activation of specific oncogenic pathways might also offer opportunities that could be exploited at the therapeutic level. In line with this, we here show that endogenous interleukin 7 (IL7) can increase the expression of the oncogenic kinase proviral integration site for Moloney-murine leukemia 1 (PIM1) in CD127+ T-ALL/T-LBL, thereby rendering these tumor cells sensitive to in vivo PIM inhibition. In addition, using different CD127+ T-ALL/T-LBL xenograft models, we also reveal that residual tumor cells, which remain present after short-term in vivo chemotherapy, display consistent upregulation of PIM1 as compared with bulk nontreated tumor cells. Notably, this effect was transient as increased PIM1 levels were not observed in reestablished disease after abrogation of the initial chemotherapy. Furthermore, we uncover that this phenomenon is, at least in part, mediated by the ability of glucocorticoids to cause transcriptional upregulation of IL7RA in T-ALL/T-LBL patient-derived xenograft (PDX) cells, ultimately resulting in non-cell-autonomous PIM1 upregulation by endogenous IL7. Finally, we confirm in vivo that chemotherapy in combination with a pan-PIM inhibitor can improve leukemia survival in a PDX model of CD127+ T-ALL. Altogether, our work reveals that IL7 and glucocorticoids coordinately drive aberrant activation of PIM1 and suggests that IL7-responsive CD127+ T-ALL and T-LBL patients could benefit from PIM inhibition during induction chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Citocinas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Linfócitos T/imunologia , Animais , Apoptose , Proliferação de Células , Quimioterapia Combinada , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Linfócitos T/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 9(1): 10577, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332244

RESUMO

In cancer research, it remains challenging to functionally validate putative novel oncogenic drivers and to establish relevant preclinical models for evaluation of novel therapeutic strategies. Here, we describe an optimized and efficient pipeline for the generation of novel conditional overexpression mouse models in which putative oncogenes, along with an eGFP/Luciferase dual reporter, are expressed from the endogenous ROSA26 (R26) promoter. The efficiency of this approach was demonstrated by the generation and validation of novel R26 knock-in (KI) mice that allow conditional overexpression of Jarid2, Runx2, MN1 and a dominant negative allele of ETV6. As proof of concept, we confirm that MN1 overexpression in the hematopoietic lineage is sufficient to drive myeloid leukemia. In addition, we show that T-cell specific activation of MN1 in combination with loss of Pten increases tumour penetrance and stimulates the formation of Lyl1+ murine T-cell lymphoblastic leukemias or lymphomas (T-ALL/T-LBL). Finally, we demonstrate that these luciferase-positive murine AML and T-ALL/T-LBL cells are transplantable into immunocompromised mice allowing preclinical evaluation of novel anti-leukemic drugs in vivo.


Assuntos
Neoplasias Hematológicas/genética , Oncogenes/genética , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Técnicas de Introdução de Genes , Genes Reporter , Neoplasias Hematológicas/etiologia , Humanos , Leucemia/etiologia , Leucemia/genética , Leucemia Mieloide/genética , Masculino , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Complexo Repressor Polycomb 2/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética
14.
Cell Signal ; 28(8): 1001-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27155323

RESUMO

Dopamine receptors are G protein-coupled receptors involved in regulation of cognition, learning, movement and endocrine signaling. The action of G protein-coupled receptors is highly regulated by multifunctional proteins, such as ß-arrestins which can control receptor desensitization, ubiquitination and signaling. Previously, we have reported that ß-arrestin 2 interacts with KLHL12, a BTB-Kelch protein which functions as an adaptor in a Cullin3-based E3 ligase complex and promotes ubiquitination of the dopamine D4 receptor. Here, we have investigated the molecular basis of the interaction between KLHL12 and ß-arrestins and questioned its functional relevance. Our data demonstrate that ß-arrestin 1 and ß-arrestin 2 bind constitutively to the most common dopamine D4 receptor polymorphic variants and to KLHL12 and that all three proteins can interact within a single macromolecular complex. Surprisingly, stimulation of the receptor has no influence on the association between these proteins or their cellular distribution. We found that Cullin3 also interacts with both ß-arrestins but has no influence on their ubiquitination. Knockout of one of the two ß-arrestins hampers neither interaction between the dopamine D4 receptor and KLHL12, nor ubiquitination of the receptor. Finally, our results indicate that p44/42 MAPK phosphorylation, the signaling pathway which is often regulated by ß-arrestins is not influenced by KLHL12, but seems to be exclusively mediated by Gαi protein upon dopamine D4 receptor stimulation.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Receptores de Dopamina D4/metabolismo , beta-Arrestinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Culina/metabolismo , Dopamina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Repetição Kelch , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Toxina Pertussis/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
15.
PLoS One ; 10(12): e0145654, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26717573

RESUMO

DOPAMINE D4 RECEPTOR POLYMORPHISM: The dopamine D4 receptor has an important polymorphism in its third intracellular loop that is intensively studied and has been associated with several abnormal conditions, among others, attention deficit hyperactivity disorder. KLHL12 PROMOTES UBIQUITINATION OF THE DOPAMINE D4 RECEPTOR ON NON-LYSINE RESIDUES: In previous studies we have shown that KLHL12, a BTB-Kelch protein, specifically interacts with the polymorphic repeats of the dopamine D4 receptor and enhances its ubiquitination, which, however, has no influence on receptor degradation. In this study we provide evidence that KLHL12 promotes ubiquitination of the dopamine D4 receptor on non-lysine residues. By using lysine-deficient receptor mutants and chemical approaches we concluded that ubiquitination on cysteine, serine and/or threonine is possible. DIFFERENTIAL UBIQUITINATION OF THE DOPAMINE D4 RECEPTOR POLYMORPHIC VARIANTS: Additionally, we show that the dopamine D4.7 receptor variant, which is associated with a predisposition to develop attention deficient hyperactivity disorder, is differentially ubiquitinated compared to the other common receptor variants D4.2 and D4.4. Together, our study suggests that GPCR ubiquitination is a complex and variable process.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Lisina/genética , Proteínas dos Microfilamentos/genética , Polimorfismo Genético/genética , Receptores de Dopamina D4/genética , Ubiquitinação/genética , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular , Genótipo , Células HEK293 , Humanos
16.
Methods Cell Biol ; 117: 323-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143985

RESUMO

With 356 members in the human genome, G protein-coupled receptors (GPCRs) constitute the largest family of proteins involved in signal transduction across biological membranes. GPCRs are integral membrane proteins featuring a conserved structural topology with seven transmembrane domains. By recognizing a large diversity of hormones and neurotransmitters, GPCRs mediate signal transduction pathways through their interactions with both extracellular small-molecule ligands and intracellular G proteins to initiate appropriate cellular signaling cascades. As there is a clear link between GPCRs and several disorders, GPCRs currently constitute the largest family of proteins targeted by marketed pharmaceuticals. Therefore, a detailed understanding of the biogenesis of these receptors and of GPCR-protein complex assembly can help to answer some important questions. In this chapter, we will discuss several methods to isolate GPCRs and to study, via coimmunoprecipitation, protein-protein interactions. Special attention will be given to GPCR dimerization, which often starts already in the endoplasmic reticulum and influences the maturation of the receptor. Next, we will also explain an elegant tool to study GPCR biogenesis based on the glycosylation pattern of the receptor of interest.


Assuntos
Imunoprecipitação/métodos , Receptores de Dopamina D4/metabolismo , Detergentes/química , Expressão Gênica , Glicosilação , Células HEK293 , Humanos , Cinética , Plasmídeos , Ligação Proteica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Receptores de Dopamina D4/química , Receptores de Dopamina D4/genética , Transdução de Sinais , Dodecilsulfato de Sódio/química , Transfecção/métodos , Ureia/química
17.
FEBS J ; 279(11): 1994-2003, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22448645

RESUMO

The 5-hydroxytryptamine (5-HT)(7(a)) receptor is a G-protein-coupled receptor critically involved in human psychiatric and neurological disorders. In the present study, we evaluate the presence and the functional role of N-glycosylation of the human 5-HT(7) receptor. Western blot analysis of HEK293T cells transiently expressing the 5-HT(7(a)) receptor in the presence of tunicamycin gave rise to a band shift, indicating the existence of an N-glycosylated form of the 5-HT(7(a)) receptor. To further investigate this, we mutated the two predicted N-glycosylation sites (N5Q and N66Q) and compared the molecular mass of the immunoreactive bands with those of the wild-type receptor, indicating that both asparagines were N-glycosylated. The mutant receptors had the same binding affinity for [(3) H]5-CT and the same potency and efficacy with regard to 5-HT-induced activation of adenylyl cyclase. However, there was a reduction in maximal ligand binding for the single and double mutants compared to the wild-type receptor. Next, membrane labelling and immunocytochemical studies demonstrated that the N-glycosylation mutants were expressed at the cell surface. We conclude that N-glycosylation is not important for cell surface expression of the 5-HT(7) receptor.


Assuntos
Mutação , Receptores de Serotonina/metabolismo , Adenilil Ciclases/metabolismo , Asparagina/química , Asparagina/metabolismo , Glutamina/química , Glutamina/metabolismo , Glicosilação , Células HEK293 , Humanos , Plasmídeos , Ligação Proteica , Ensaio Radioligante , Receptores de Serotonina/química , Receptores de Serotonina/genética , Serotonina/análogos & derivados , Serotonina/metabolismo , Transfecção
18.
Cell Signal ; 24(5): 1053-63, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22245496

RESUMO

The 5-hydroxytryptamine (5-HT)7 receptor is the most recently identified serotonin receptor and is involved in a wide variety of central nervous system (CNS) functions, namely circadian rhythm, REM sleep, depression, thermoregulation, obsessive-compulsive disorder (OCD), anxiety, schizophrenia, epilepsy, nociception, migraine, sensation-seeking behavior, impulsivity, learning and memory. These numerous (patho)physiological processes of the CNS, in which the 5-HT7 receptor is involved, most likely reflect a diverse set of signaling pathways arising from this receptor. In order to reveal new interaction partners and possibly new signaling and/or trafficking pathways, we performed a yeast two-hybrid screening, using the C-terminal tail of the 5-HT7a receptor as bait and an adult-human brain cDNA library as prey. In this way we identified RhoBTB3 as a new interaction partner of the 5-HT7a receptor. By means of co-immunoprecipitation we were able to confirm the interaction between full length 5-HT7a receptor and RhoBTB3 in HEK293T cells. Subsequent domain mapping of this interaction revealed that not only the C-terminal tail, but also the third intracellular loop of the 5-HT7a receptor is involved. In addition, immunofluorescence microscopy showed clear co-localization between the 5-HT7a receptor and RhoBTB3 at the plasma membrane and in the endoplasmic reticulum. Despite the fact that RhoBTB3 has been shown to interact with Cul3, which in turn interacts with the E3 ubiquitin ligase, Roc1, we show here that RhoBTB3 neither recruits Cul3/Roc1 to the 5-HT7a receptor nor does it mediate ubiquitination of this receptor. Instead, we demonstrate that RhoBTB3 strongly inhibits proteasomal degradation of the 5-HT7a receptor.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores de Serotonina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Membrana Celular/metabolismo , Proteínas Culina/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Leupeptinas/farmacologia , Dados de Sequência Molecular , Inibidores de Proteassoma , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores de Serotonina/química , Técnicas do Sistema de Duplo-Híbrido
19.
Artigo em Inglês | MEDLINE | ID: mdl-21393836

RESUMO

The extracellular complex between the haematopoietic receptor Flt3 and its cytokine ligand (FL) is the cornerstone of signalling cascades that are central to early haematopoiesis and the immune system. Here, efficient protocols for the production of two ectodomain variants of human Flt3 receptor, Flt3D1-D5 and Flt3D1-D4, for structural studies are reported based on tetracycline-inducible stable cell lines in HEK293S cells deficient in N-acetylglycosaminyltransferase I (GnTI-/-) that can secrete the target proteins with limited and homogeneous N-linked glycosylation to milligram amounts. The ensuing preparative purification of Flt3 receptor-ligand complexes yielded monodisperse complex preparations that were amenable to crystallization. Crystals of the Flt3D1-D4-FL and Flt3D1-D5-FL complexes diffracted to 4.3 and 7.8 Šresolution, respectively, and exhibited variable diffraction quality even within the same crystal. The resulting data led to the successful structure determination of Flt3D1-D4-FL via a combination of molecular-replacement and density-modification protocols exploiting the noncrystallographic symmetry and high solvent content of the crystals.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Cristalografia por Raios X , Células HEK293 , Humanos , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Conformação Proteica , Proteínas Recombinantes/genética , Tirosina Quinase 3 Semelhante a fms/genética
20.
FEBS J ; 278(8): 1333-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21320289

RESUMO

Dopamine D(4) receptors (D(4) Rs) are G protein-coupled receptors that play a role in attention and cognition. In the present study, we investigated the dimerization properties of this receptor. Western blot analysis of the human D(4.2)R, D(4.4)R and D(4.7)R revealed the presence of higher molecular weight immunoreactive bands, which might indicate the formation of receptor dimers and multimers. Homo- and heterodimerization of the receptors was confirmed by co-immunoprecipitation and bioluminescence resonance energy transfer studies. Although dimerization of a large number of G protein-coupled receptors has been described, the functional importance often remains to be elucidated. Folding efficiency is rate-limiting for D(4)R biogenesis and quality control in the endoplasmic reticulum plays an important role for D(4)R maturation. Co-immunoprecipitation and immunofluorescence microscopy studies using wild-type and a nonfunctional D(4.4)R folding mutant show that oligomerization occurs in the endoplasmic reticulum and that this plays a role in the biogenesis and cell surface targeting of the D(4)R. The different polymorphic repeat variants of the D(4)R display differential sensitivity to the chaperone effect. In the present study, we show that this is also reflected by bioluminescence resonance energy transfer saturation assays, suggesting that the polymorphic repeat variants have different relative affinities to form homo- and heterodimers. In summary, we conclude that D(4)Rs form oligomers with different affinities and that dimerization plays a role in receptor biogenesis.


Assuntos
Receptores de Dopamina D4/metabolismo , Dimerização , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Medições Luminescentes , Dobramento de Proteína , Receptores de Dopamina D4/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA