Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 8(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35877623

RESUMO

Few-shot classification aims at leveraging knowledge learned in a deep learning model, in order to obtain good classification performance on new problems, where only a few labeled samples per class are available. Recent years have seen a fair number of works in the field, each one introducing their own methodology. A frequent problem, though, is the use of suboptimally trained models as a first building block, leading to doubts about whether proposed approaches bring gains if applied to more sophisticated pretrained models. In this work, we propose a simple way to train such models, with the aim of reaching top performance on multiple standardized benchmarks in the field. This methodology offers a new baseline on which to propose (and fairly compare) new techniques or adapt existing ones.

2.
Netw Neurosci ; 5(2): 322-336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34189367

RESUMO

The application of graph theory to model the complex structure and function of the brain has shed new light on its organization, prompting the emergence of network neuroscience. Despite the tremendous progress that has been achieved in this field, still relatively few methods exploit the topology of brain networks to analyze brain activity. Recent attempts in this direction have leveraged on the one hand graph spectral analysis (to decompose brain connectivity into eigenmodes or gradients) and the other graph signal processing (to decompose brain activity "coupled to" an underlying network in graph Fourier modes). These studies have used a variety of imaging techniques (e.g., fMRI, electroencephalography, diffusion-weighted and myelin-sensitive imaging) and connectivity estimators to model brain networks. Results are promising in terms of interpretability and functional relevance, but methodologies and terminology are variable. The goals of this paper are twofold. First, we summarize recent contributions related to connectivity gradients and graph signal processing, and attempt a clarification of the terminology and methods used in the field, while pointing out current methodological limitations. Second, we discuss the perspective that the functional relevance of connectivity gradients could be fruitfully exploited by considering them as graph Fourier bases of brain activity.

3.
Front Neurosci ; 15: 626723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177443

RESUMO

In this paper, we describe the results of a single subject study attempting at a better understanding of the subjective mental state during musical improvisation. In a first experiment, we setup an ecological paradigm measuring EEG on a musician in free improvised concerts with an audience, followed by retrospective rating of the mental state of the improviser. We introduce Subjective Temporal Resolution (STR), a retrospective rating assessing the instantaneous quantization of subjective timing of the improviser. We identified high and low STR states using Hidden Markov Models in two performances, and were able to decode those states using supervised learning on instantaneous EEG power spectrum, showing increases in theta and alpha power with high STR values. In a second experiment, we found an increase of theta and beta power when experimentally manipulating STR in a musical improvisation imagery experiment. These results are interpreted with respect to previous research on flow state in creativity, as well as with the temporal processing literature. We suggest that a component of the subjective state of musical improvisation may be reflected in an underlying mechanism related to the subjective quantization of time. We also demonstrate the feasibility of single case studies of musical improvisation using brain activity measurements and retrospective reports, by obtaining consistent results across multiple sessions.

4.
Ann Phys Rehabil Med ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32535167

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

5.
Front Neurosci ; 14: 528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655347

RESUMO

Neurofeedback (NF) and brain-computer interface (BCI) applications rely on the registration and real-time feedback of individual patterns of brain activity with the aim of achieving self-regulation of specific neural substrates or control of external devices. These approaches have historically employed visual stimuli. However, in some cases vision is unsuitable or inadequately engaging. Other sensory modalities, such as auditory or haptic feedback have been explored, and multisensory stimulation is expected to improve the quality of the interaction loop. Moreover, for motor imagery tasks, closing the sensorimotor loop through haptic feedback may be relevant for motor rehabilitation applications, as it can promote plasticity mechanisms. This survey reviews the various haptic technologies and describes their application to BCIs and NF. We identify major trends in the use of haptic interfaces for BCI and NF systems and discuss crucial aspects that could motivate further studies.

6.
Sci Data ; 7(1): 173, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523031

RESUMO

Combining EEG and fMRI allows for integration of fine spatial and accurate temporal resolution yet presents numerous challenges, noticeably if performed in real-time to implement a Neurofeedback (NF) loop. Here we describe a multimodal dataset of EEG and fMRI acquired simultaneously during a motor imagery NF task, supplemented with MRI structural data. The study involved 30 healthy volunteers undergoing five training sessions. We showed the potential and merit of simultaneous EEG-fMRI NF in previous work. Here we illustrate the type of information that can be extracted from this dataset and show its potential use. This represents one of the first simultaneous recording of EEG and fMRI for NF and here we present the first open access bi-modal NF dataset integrating EEG and fMRI. We believe that it will be a valuable tool to (1) advance and test methodologies for multi-modal data integration, (2) improve the quality of NF provided, (3) improve methodologies for de-noising EEG acquired under MRI and (4) investigate the neuromarkers of motor-imagery using multi-modal information.


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Imageamento por Ressonância Magnética , Neurorretroalimentação , Voluntários Saudáveis , Humanos
7.
Front Hum Neurosci ; 14: 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132910

RESUMO

Traditional rehabilitation techniques present limitations and the majority of patients show poor 1-year post-stroke recovery. Thus, Neurofeedback (NF) or Brain-Computer-Interface applications for stroke rehabilitation purposes are gaining increased attention. Indeed, NF has the potential to enhance volitional control of targeted cortical areas and thus impact on motor function recovery. However, current implementations are limited by temporal, spatial or practical constraints of the specific imaging modality used. In this pilot work and for the first time in literature, we applied bimodal EEG-fMRI NF for upper limb stroke recovery on four stroke-patients with different stroke characteristics and motor impairment severity. We also propose a novel, multi-target training approach that guides the training towards the activation of the ipsilesional primary motor cortex. In addition to fMRI and EEG outcomes, we assess the integrity of the corticospinal tract (CST) with tractography. Preliminary results suggest the feasibility of our approach and show its potential to induce an augmented activation of ipsilesional motor areas, depending on the severity of the stroke deficit. Only the two patients with a preserved CST and subcortical lesions succeeded in upregulating the ipsilesional primary motor cortex and exhibited a functional improvement of upper limb motricity. These findings highlight the importance of taking into account the variability of the stroke patients' population and enabled to identify inclusion criteria for the design of future clinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA