Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 178, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627359

RESUMO

Mitochondrial dysfunction represents one of the most common molecular hallmarks of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder caused by the selective degeneration and death of motor neurons. The accumulation of misfolded proteins on and within mitochondria, as observed for SOD1 G93A mutant, correlates with a drastic reduction of mitochondrial respiration and the inhibition of metabolites exchanges, including ADP/ATP and NAD+/NADH, across the Voltage-Dependent Anion-selective Channel 1 (VDAC1), the most abundant channel protein of the outer mitochondrial membrane. Here, we show that the AAV-mediated upregulation of VDAC1 in the spinal cord of transgenic mice expressing SOD1 G93A completely rescues the mitochondrial respiratory profile. This correlates with the increased activity and levels of key regulators of mitochondrial functions and maintenance, namely the respiratory chain Complex I and the sirtuins (Sirt), especially Sirt3. Furthermore, the selective increase of these mitochondrial proteins is associated with an increase in Tom20 levels, the receptor subunit of the TOM complex. Overall, our results indicate that the overexpression of VDAC1 has beneficial effects on ALS-affected tissue by stabilizing the Complex I-Sirt3 axis.

2.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835102

RESUMO

Voltage-Dependent Anion-selective Channel isoform 1 (VDAC1) is the most abundant isoform of the outer mitochondrial membrane (OMM) porins and the principal gate for ions and metabolites to and from the organelle. VDAC1 is also involved in a number of additional functions, such as the regulation of apoptosis. Although the protein is not directly involved in mitochondrial respiration, its deletion in yeast triggers a complete rewiring of the whole cell metabolism, with the inactivation of the main mitochondrial functions. In this work, we analyzed in detail the impact of VDAC1 knockout on mitochondrial respiration in the near-haploid human cell line HAP1. Results indicate that, despite the presence of other VDAC isoforms in the cell, the inactivation of VDAC1 correlates with a dramatic impairment in oxygen consumption and a re-organization of the relative contributions of the electron transport chain (ETC) enzymes. Precisely, in VDAC1 knockout HAP1 cells, the complex I-linked respiration (N-pathway) is increased by drawing resources from respiratory reserves. Overall, the data reported here strengthen the key role of VDAC1 as a general regulator of mitochondrial metabolism.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Consumo de Oxigênio , Canal de Ânion 1 Dependente de Voltagem , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Consumo de Oxigênio/genética , Porinas/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
3.
Cell Death Dis ; 14(2): 122, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792609

RESUMO

Mitochondrial dysfunction and the loss of mitophagy, aimed at recycling irreversibly damaged organelles, contribute to the onset of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting spinal cord motor neurons. In this work, we showed that the reduction of mitochondrial respiration, exactly oxygen flows linked to ATP production and maximal capacity, correlates with the appearance of the most common ALS motor symptoms in a transgenic mouse model expressing SOD1 G93A mutant. This is the result of the equal inhibition in the respiration linked to complex I and II of the electron transport chain, but not their protein levels. Since the overall mitochondrial mass was unvaried, we investigated the expression of the Translocator Protein (TSPO), a small mitochondrial protein whose overexpression was recently linked to the loss of mitophagy in a model of Parkinson's disease. Here we clearly showed that levels of TSPO are significantly increased in ALS mice. Mechanistically, this increase is linked to the overactivation of ERK1/2 pathway and correlates with a decrease in the expression of the mitophagy-related marker Atg12, indicating the occurrence of impairments in the activation of mitophagy. Overall, our work sets out TSPO as a key regulator of mitochondrial homeostasis in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitofagia , Doenças Neurodegenerativas/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
4.
Life (Basel) ; 12(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743925

RESUMO

α-synuclein (αSyn) is a small neuronal protein whose accumulation correlates with Parkinson's disease. αSyn A53T mutant impairs mitochondrial functions by affecting substrate import within the organelle, activity of complex I and the maximal respiratory capacity. However, the precise mechanism initiating the bioenergetic dysfunction is not clearly understood yet. By overexpressing αSyn A53T in SH-SY5Y cells, we investigated the specific changes in the mitochondrial respiratory profile using High-Resolution Respirometry. We found that αSyn A53T increases dissipative fluxes across the intermembrane mitochondrial space: this does not compromise the oxygen flows devoted to ATP production while it reduces the bioenergetic excess capacity of mitochondria, providing a possible explanation of the increased cell susceptibility observed in the presence of further stress stimuli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA