Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 110(2-1): 024403, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295026

RESUMO

How the human brain processes information during different cognitive tasks is one of the greatest questions in contemporary neuroscience. Understanding the statistical properties of brain signals during specific activities is one promising way to address this question. Here we analyze freely available data from implanted electrocorticography (ECoG) in five human subjects during two different cognitive tasks in the light of information theory quantifiers ideas. We employ a symbolic information approach to determine the probability distribution function associated with the time series from different cortical areas. Then we utilize these probabilities to calculate the associated Shannon entropy and a statistical complexity measure based on the disequilibrium between the actual time series and one with a uniform probability distribution function. We show that an Euclidian distance in the complexity-entropy plane and an asymmetry index for complexity are useful for comparing the two conditions. We show that our method can distinguish visual search epochs from blank screen intervals in different electrodes and patients. By using a multiscale approach and embedding time delays to downsample the data, we find important timescales in which the relevant information is being processed. We also determine cortical regions and time intervals along the 2-s-long trials that present more pronounced differences between the two cognitive tasks. Finally, we show that the method is useful to distinguish cognitive processes using brain activity on a trial-by-trial basis.


Assuntos
Cognição , Eletrocorticografia , Humanos , Encéfalo/fisiologia , Modelos Neurológicos , Teoria da Informação , Entropia
2.
PLoS One ; 17(9): e0273425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36103508

RESUMO

By the peak of COVID-19 restrictions on April 8, 2020, up to 1.5 billion students across 188 countries were affected by the suspension of physical attendance in schools. Schools were among the first services to reopen as vaccination campaigns advanced. With the emergence of new variants and infection waves, the question now is to find safe protocols for the continuation of school activities. We need to understand how reliable these protocols are under different levels of vaccination coverage, as many countries have a meager fraction of their population vaccinated, including Uganda where the coverage is about 8%. We investigate the impact of face-to-face classes under different protocols and quantify the surplus number of infected individuals in a city. Using the infection transmission when schools were closed as a baseline, we assess the impact of physical school attendance in classrooms with poor air circulation. We find that (i) resuming school activities with people only wearing low-quality masks leads to a near fivefold city-wide increase in the number of cases even if all staff is vaccinated, (ii) resuming activities with students wearing good-quality masks and staff wearing N95s leads to about a threefold increase, (iii) combining high-quality masks and active monitoring, activities may be carried out safely even with low vaccination coverage. These results highlight the effectiveness of good mask-wearing. Compared to ICU costs, high-quality masks are inexpensive and can help curb the spreading. Classes can be carried out safely, provided the correct set of measures are implemented.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Programas de Imunização , Instituições Acadêmicas , Estudantes , Cobertura Vacinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA