Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 6133, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273526

RESUMO

Birds, and especially raptors, are believed to forage mainly using visual cues. Indeed, raptors (scavengers and predators) have the highest visual acuity known to date. However, scavengers and predators differ in their visual systems such as in their foveal configuration. While the function of the foveal shape remains unknown, individual variation has never been quantified in birds. In this study, we examined whether foveal shape differs among individuals in relation to eye size, sex, age, eye (left or right) and genetic proximity in a scavenging raptor, the black kite Milvus migrans. We assessed foveal shape in 47 individuals using spectral domain optical coherence tomography (OCT) and geometric morphometric analysis. We found that foveal depth was significantly related to eye size. While foveal width also increased with eye size, it was strongly related to age; younger individuals had a wider fovea with a more pronounced rim. We found no relationship between foveal shape and genetic proximity, suggesting that foveal shape is not a hereditary trait. Our study revealed that the shape of the fovea is directly linked to eye size and that the physical structure of the fovea may develop during the entire life of black kites.


Assuntos
Variação Anatômica , Aves/anatomia & histologia , Fóvea Central/anatomia & histologia , Animais , Aves/fisiologia , Fóvea Central/diagnóstico por imagem , Comportamento Predatório , Tomografia de Coerência Óptica
2.
J Exp Biol ; 223(Pt 10)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32321751

RESUMO

Ecological factors such as spatial habitat complexity and diet can explain variation in visual morphology, but few studies have sought to determine whether visual specialisation can occur among populations of the same species. We used a small Australian freshwater fish (the western rainbowfish, Melanotaenia australis) to determine whether populations showed variation in eye size and eye position, and whether this variation could be explained by environmental (light availability, turbidity) and ecological (predation risk, habitat complexity, invertebrate abundance) variables. We investigated three aspects of eye morphology - (1) eye size relative to body size, (2) pupil size relative to eye size and (3) eye position in the head - for fish collected from 14 sites in a major river catchment in northwest Western Australia. We found significant variation among populations in all three measures of eye morphology, but no effect of sex on eye size or eye position. Variation in eye diameter and eye position was best explained by the level of habitat complexity. Specifically, fish occurring in habitats with low complexity (i.e. open water) tended to have smaller, more dorsally located eyes than those occurring in more complex habitats (i.e. vegetation present). The size of the pupil relative to the size of the eye was most influenced by the presence of surrounding rock formations; fish living in gorge habitats had significantly smaller pupils (relative to eye size) than those occupying semi-gorge sites or open habitats. Our findings reveal that different ecological and environmental factors contribute to habitat-specific visual specialisations within a species.


Assuntos
Poecilia , Animais , Austrália , Ecossistema , Comportamento Predatório , Austrália Ocidental
3.
J Comp Neurol ; 528(17): 2848-2863, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154931

RESUMO

In this study, we assessed eye morphology and retinal topography in two flamingo species, the Caribbean flamingo (Phoenicopterus ruber) and the Chilean flamingo (P. chilensis). Eye morphology is similar in both species and cornea size relative to eye size (C:A ratio) is intermediate between those previously reported for diurnal and nocturnal birds. Using stereology and retinal whole mounts, we estimate that the total number of Nissl-stained neurons in the retinal ganglion cell (RGC) layer in the Caribbean and Chilean flamingo is ~1.70 and 1.38 million, respectively. Both species have a well-defined visual streak with a peak neuron density of between 13,000 and 16,000 cells mm-2 located in a small central area. Neurons in the high-density regions are smaller and more homogeneous compared to those in medium- and low-density regions. Peak anatomical spatial resolving power in both species is approximately 10-11 cycles/deg. En-face images of the fundus in live Caribbean flamingos acquired using spectral domain optical coherence tomography (SD-OCT) revealed a thin, dark band running nasotemporally just dorsal to the pecten, which aligned with the visual streak in the retinal topography maps. Cross-sectional images (B-scans) obtained with SD-OCT showed that this dark band corresponds with an area of retinal thickening compared to adjacent areas. Neither the retinal whole mounts, nor the SD-OCT imaging revealed any evidence of a central fovea in either species. Overall, we suggest that eye morphology and retinal topography in flamingos reflects their cathemeral activity pattern and the physical nature of the habitats in which they live.


Assuntos
Aves/fisiologia , Retina/diagnóstico por imagem , Retina/fisiologia , Tomografia de Coerência Óptica/métodos , Animais , Masculino , Retina/citologia , Especificidade da Espécie
4.
PLoS One ; 14(2): e0212515, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30807595

RESUMO

Baleen whales face the challenge of finding patchily distributed food in the open ocean. Their relatively well-developed olfactory structures suggest that they could identify the specific odours given off by planktonic prey such as krill aggregations. Like other marine predators, they may also detect dimethyl sulfide (DMS), a chemical released in areas of high marine productivity. However, dedicated behavioural studies still have to be conducted in baleen whales in order to confirm the involvement of chemoreception in their feeding ecology. We implemented 56 behavioural response experiments in humpback whales using two food-related chemical stimuli, krill extract and DMS, as well as their respective controls (orange clay and vegetable oil) in their breeding (Madagascar) and feeding grounds (Iceland and Antarctic Peninsula). The whales approached the stimulus area and stayed longer in the trial zone during krill extract trials compared to control trials, suggesting that they were attracted to the chemical source and spent time exploring its surroundings, probably in search of prey. This response was observed in Iceland, and to a lesser extend in Madagascar, but not in Antarctica. Surface behaviours indicative of sensory exploration, such as diving under the stimulus area and stopping navigation, were also observed more often during krill extract trials than during control trials. Exposure to DMS did not elicit such exploration behaviours in any of the study areas. However, acoustic analyses suggest that DMS and krill extract both modified the whales' acoustic activity in Madagascar. Altogether, these results provide the first behavioural evidence that baleen whales actually perceive prey-derived chemical cues over distances of several hundred metres. Chemoreception, especially olfaction, could thus be used for locating prey aggregations and for navigation at sea, as it has been shown in other marine predators including seabirds.


Assuntos
Comportamento Alimentar/fisiologia , Jubarte/fisiologia , Algoritmos , Animais , Regiões Antárticas , Aves , Células Quimiorreceptoras/fisiologia , Sinais (Psicologia) , Ecossistema , Euphausiacea , Alimentos , Cadeia Alimentar , Jubarte/psicologia , Islândia , Madagáscar , Modelos Biológicos , Odorantes , Comportamento Predatório/fisiologia , Taxa Respiratória/fisiologia , Olfato/fisiologia , Sulfetos , Vocalização Animal/fisiologia
5.
Brain Behav Evol ; 92(3-4): 97-116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30677755

RESUMO

Little is known about the visual systems of large baleen whales (Mysticeti: Cetacea). In this study, we investigate eye morphology and the topographic distribution of retinal ganglion cells (RGCs) in two species of mysticete, Bryde's whale (Balaenoptera edeni) and the humpback whale (Megaptera novaeanglia). Both species have large eyes characterised by a thickened cornea, a heavily thickened sclera, a highly vascularised fibro-adipose bundle surrounding the optic nerve at the back of the eye, and a reflective blue-green tapetum fibrosum. Using stereology and retinal whole mounts, we estimate a total of 274,268 and 161,371 RGCs in the Bryde's whale and humpback whale retinas, respectively. Both species have a similar retinal topography, consisting of nasal and temporal areas of high RGC density, suggesting that having higher visual acuity in the anterior and latero-caudal visual fields is particularly important in these animals. The temporal area is larger in both species and contains the peak RGC densities (160 cells mm-2 in the humpback whale and 200 cells mm-2 in Bryde's whale). In the Bryde's whale retina, the two high-density areas are connected by a weak centro-ventral visual streak, but such a specialisation is not evident in the humpback whale. Measurements of RGC soma area reveal that although the RGCs in both species vary substantially in size, RGC soma area is inversely proportional to RGC density, with cells in the nasal and temporal high-density areas being relatively more homogeneous in size compared to the RGCs in the central retina and the dorsal and ventral retinal periphery. Some of the RGCs were very large, with soma areas of over 2,000 µm2. Using peak RGC density and eye axial diameter (Bryde's whale: 63.5 mm; humpback whale: 48.5 mm), we estimated the peak anatomical spatial resolving power in water to be 4.8 cycles/degree and 3.3 cycles/degree in the Bryde's whale and the humpback whale, respectively. Overall, our findings for these two species are very similar to those reported for other species of cetaceans. This indicates that, irrespective of the significant differences in body size and shape, behavioural ecology and feeding strategy between mysticetes and odontocetes (toothed whales), cetacean eyes are adapted to vision in dim light and adhere to a common "bauplan" that evolved prior to the divergence of the two cetacean parvorders (Odontoceti and Mysticeti) over 30 million years ago.


Assuntos
Topografia da Córnea/métodos , Retina/anatomia & histologia , Baleias/anatomia & histologia , Animais , Cetáceos/anatomia & histologia , Especificidade da Espécie
6.
Brain Behav Evol ; 89(2): 68-83, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28241131

RESUMO

Fishes exhibit lifelong neurogenesis and continual brain growth. One consequence of this continual growth is that the nervous system has the potential to respond with enhanced plasticity to changes in ecological conditions that occur during ontogeny. The life histories of many teleost fishes are composed of a series of distinct stages that are characterized by shifts in diet, habitat, and behavior. In many cases, these shifts correlate with changes in overall brain growth and brain organization, possibly reflecting the relative importance of different senses and locomotor performance imposed by the new ecological niches they encounter throughout life. Chondrichthyan (cartilaginous) fishes also undergo ontogenetic shifts in habitat, movement patterns, diet, and behavior, but very little is known about any corresponding shifts in the size and organization of their brains. Here, we investigated postparturition ontogenetic changes in brain-body size scaling, the allometric scaling of seven major brain areas (olfactory bulbs, telencephalon, diencephalon, optic tectum, tegmentum, cerebellum, and medulla oblongata) relative to the rest of the brain, and cerebellar foliation in a chondrichthyan, i.e., the bluespotted stingray Neotrygon kuhlii. We also investigated the unusual morphological asymmetry of the cerebellum in this and other batoids. As in teleosts, the brain continues to grow throughout life, with a period of rapid initial growth relative to body size, before slowing considerably at the onset of sexual maturity. The olfactory bulbs and the cerebellum scale with positive allometry relative to the rest of the brain, whereas the other five brain areas scale with varying degrees of negative allometry. None of the major brain areas showed the stage-specific differences in rates of growth often found in teleosts. Cerebellar foliation also increases at a faster rate than overall brain growth. We speculate that changes in the olfactory bulbs and cerebellum could reflect increased olfactory and locomotor capabilities, which may be associated with ontogenetic shifts in diet, habitat use, and activity patterns, as well as shifts in behavior that occur with the onset of sexual maturity. The frequency distributions of the three cerebellar morphologies exhibited in this species best fit a 2:1:1 (right-sided:left-sided:intermediate) distribution, mirroring previous findings for another stingray species.


Assuntos
Ontologias Biológicas , Encéfalo/anatomia & histologia , Rajidae/anatomia & histologia , Animais , Gráficos por Computador , Feminino , Modelos Lineares , Masculino , Especificidade da Espécie
7.
Brain Behav Evol ; 89(1): 33-47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214856

RESUMO

Lampreys and hagfishes are the sole surviving representatives of the early agnathan (jawless) stage in vertebrate evolution, which has previously been regarded as the least encephalized group of all vertebrates. Very little is known, however, about the extent of interspecific variation in relative brain size in these fishes, as previous studies have focused on only a few species, even though lampreys exhibit a variety of life history traits. While some species are parasitic as adults, with varying feeding behaviors, others (nonparasitic species) do not feed after completing their macrophagous freshwater larval phase. In addition, some parasitic species remain in freshwater, while others undergo an anadromous migration. On the basis of data for postmetamorphic individuals representing approximately 40% of all lamprey species, with representatives from each of the three families, the aforementioned differences in life history traits are reflected in variations in relative brain size. Across all lampreys, brain mass increases with body mass with a scaling factor or slope (α) of 0.35, which is less than those calculated for different groups of gnathostomatous (jawed) vertebrates (α = 0.43-0.62). When parasitic and nonparasitic species are analyzed separately, with phylogeny taken into account, the scaling factors of both groups (parasitic α = 0.43, nonparasitic α = 0.45) approach those of gnathostomes. The relative brain size in fully grown adults of parasitic species is, however, less than that of the adults of nonparasitic species, paralleling differences between fully grown adults and recently metamorphosed individuals of anadromous species. The average degree of encephalization is found in anadromous parasitic lampreys and might thus represent the ancestral condition for extant lampreys. These results suggest that the degree of encephalization in lampreys varies according to both life history traits and phylogenetic relationships.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Comportamento Alimentar/fisiologia , Feiticeiras (Peixe) , Lampreias , Filogenia , Animais , Tamanho Corporal , Feiticeiras (Peixe)/anatomia & histologia , Feiticeiras (Peixe)/fisiologia , Lampreias/anatomia & histologia , Lampreias/fisiologia , Tamanho do Órgão
8.
Brain Behav Evol ; 86(3-4): 176-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587582

RESUMO

Hummingbirds are a group of small, highly specialized birds that display a range of adaptations to their nectarivorous lifestyle. Vision plays a key role in hummingbird feeding and hovering behaviours, yet very little is known about the visual systems of these birds. In this study, we measured eye morphology in 5 hummingbird species. For 2 of these species, we used stereology and retinal whole mounts to study the topographic distribution of neurons in the ganglion cell layer. Eye morphology (expressed as the ratio of corneal diameter to eye transverse diameter) was similar among all 5 species and was within the range previously documented for diurnal birds. Retinal topography was similar in Amazilia tzacatl and Calypte anna. Both species had 2 specialized retinal regions of high neuron density: a central region located slightly dorso-nasal to the superior pole of the pecten, where densities reached ∼ 45,000 cells · mm(-2), and a temporal area with lower densities (38,000-39,000 cells · mm(-2)). A weak visual streak bridged the two high-density areas. A retina from Phaethornis superciliosus also had a central high-density area with a similar peak neuron density. Estimates of spatial resolving power for all 3 species were similar, at approximately 5-6 cycles · degree(-1). Retinal cross sections confirmed that the central high-density region in C. anna contains a fovea, but not the temporal area. We found no evidence of a second, less well-developed fovea located close to the temporal retina margin. The central and temporal areas of high neuron density allow for increased spatial resolution in the lateral and frontal visual fields, respectively. Increased resolution in the frontal field in particular may be important for mediating feeding behaviors such as aerial docking with flowers and catching small insects.


Assuntos
Aves/anatomia & histologia , Olho/anatomia & histologia , Animais , Contagem de Células , Neurônios/citologia , Tamanho do Órgão , Especificidade da Espécie
9.
Brain Struct Funct ; 220(2): 1127-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24435575

RESUMO

Olfaction is a universal modality by which all animals sample chemical stimuli from their environment. In cartilaginous fishes, olfaction is critical for various survival tasks including localizing prey, avoiding predators, and chemosensory communication with conspecifics. Little is known, however, about interspecific variation in olfactory capability in these fishes, or whether the relative importance of olfaction in relation to other sensory systems varies with regard to ecological factors, such as habitat and lifestyle. In this study, we have addressed these questions by directly examining interspecific variation in the size of the olfactory bulbs (OB), the region of the brain that receives the primary sensory projections from the olfactory nerve, in 58 species of cartilaginous fishes. Relative OB size was compared among species occupying different ecological niches. Our results show that the OBs maintain a substantial level of allometric independence from the rest of the brain across cartilaginous fishes and that OB size is highly variable among species. These findings are supported by phylogenetic generalized least-squares models, which show that this variability is correlated with ecological niche, particularly habitat. The relatively largest OBs were found in pelagic-coastal/oceanic sharks, especially migratory species such as Carcharodon carcharias and Galeocerdo cuvier. Deep-sea species also possess large OBs, suggesting a greater reliance on olfaction in habitats where vision may be compromised. In contrast, the smallest OBs were found in the majority of reef-associated species, including sharks from the families Carcharhinidae and Hemiscyllidae and dasyatid batoids. These results suggest that there is great variability in the degree to which these fishes rely on olfactory cues. The OBs have been widely used as a neuroanatomical proxy for olfactory capability in vertebrates, and we speculate that differences in olfactory capabilities may be the result of functional rather than phylogenetic adaptations.


Assuntos
Bulbo Olfatório/anatomia & histologia , Tubarões/anatomia & histologia , Animais , Evolução Biológica , Sinais (Psicologia) , Ecossistema , Análise dos Mínimos Quadrados , Bulbo Olfatório/fisiologia , Tamanho do Órgão , Filogenia , Tubarões/classificação , Tubarões/fisiologia , Olfato , Especificidade da Espécie
10.
J Comp Neurol ; 522(17): 3928-42, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25044056

RESUMO

In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are retinal-recipient nuclei involved in the analysis of optic flow and the generation of the optokinetic response. The nBOR receives retinal input from displaced ganglion cells (DGCs), which are found at the margin of the inner nuclear and inner plexiform layers, rather than the ganglion cell layer. The LM receives afferents from retinal ganglion cells, but whether DGCs also project to LM remains unclear. To resolve this issue, we made small injections of retrograde tracer into LM and examined horizontal sections through the retina. For comparison, we also had cases with injections in nBOR, the optic tectum, and the anterior dorsolateral thalamus (the equivalent to the mammalian lateral geniculate nucleus). From all LM injections both retinal ganglion cells and DGCs were labeled. The percentage of DGCs, as a proportion of all labeled cells, varied from 2-28%, and these were not different in morphology or size compared to those labeled from nBOR, in which the proportion of DGCs was much higher (84-93%). DGCs were also labeled after injections into the anterior dorsolateral thalamus. The proportion was small (2-3%), and these DGCs were smaller in size than those projecting to the nBOR and LM. No DGCs were labeled from an injection in the optic tectum. Based on an analysis of size, we suggest that different populations of retinal ganglion cells are involved in the projections to LM, nBOR, the optic tectum, and the anterior dorsolateral thalamus.


Assuntos
Columbidae/anatomia & histologia , Mesencéfalo/citologia , Retina/citologia , Vias Visuais/fisiologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Mapeamento Encefálico , Toxina da Cólera/metabolismo , Dextranos/metabolismo , Neurônios/metabolismo , Colículos Superiores
11.
Anat Rec (Hoboken) ; 296(12): 1954-70, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24249399

RESUMO

Vultures are highly reliant on their sensory systems for the rapid detection and localization of carrion before other scavengers can exploit the resource. In this study, we compared eye morphology and retinal topography in two species of New World vultures (Cathartidae), turkey vultures (Cathartes aura), with a highly developed olfactory sense, and black vultures (Coragyps atratus), with a less developed sense of olfaction. We found that eye size relative to body mass was the same in both species, but that black vultures have larger corneas relative to eye size than turkey vultures. However, the overall retinal topography, the total number of cells in the retinal ganglion cell layer, peak and average cell densities, cell soma area frequency distributions, and the theoretical peak anatomical spatial resolving power were the same in both species. This suggests that the visual systems of these two species are similar and that vision plays an equally important role in the biology of both species, despite the apparently greater reliance on olfaction for finding carrion in turkey vultures.


Assuntos
Aves/anatomia & histologia , Olho/anatomia & histologia , Retina/anatomia & histologia , Animais , Aves/classificação , Células Ganglionares da Retina/citologia , Especificidade da Espécie
12.
Artigo em Inglês | MEDLINE | ID: mdl-23475299

RESUMO

Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the 'openness' of their habitats.


Assuntos
Anseriformes/fisiologia , Ecossistema , Olho , Comportamento Alimentar , Retina/fisiologia , Visão Ocular , Adaptação Fisiológica , Animais , Anseriformes/anatomia & histologia , Dieta , Mergulho , Olho/anatomia & histologia , Retina/citologia , Células Ganglionares da Retina/fisiologia , Especificidade da Espécie , Natação , Acuidade Visual
13.
Brain Behav Evol ; 81(1): 27-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23296024

RESUMO

Although they are usually regarded as nocturnal, owls exhibit a wide range of activity patterns, from strictly nocturnal, to crepuscular or cathemeral, to diurnal. Several studies have shown that these differences in the activity pattern are reflected in differences in eye morphology and retinal organization. Despite the evidence that differences in activity pattern among owl species are reflected in the peripheral visual system, there has been no attempt to correlate these differences with changes in the visual regions in the brain. In this study, we compare the relative size of nuclei in the main visual pathways in nine species of owl that exhibit a wide range of activity patterns. We found marked differences in the relative size of all visual structures among the species studied, both in the tectofugal and the thalamofugal pathway, as well in other retinorecipient nuclei, including the nucleus lentiformis mesencephali, the nucleus of the basal optic root and the nucleus geniculatus lateralis, pars ventralis. We show that the barn owl (Tyto alba), a species widely used in the study of the integration of visual and auditory processing, has reduced visual pathways compared to strigid owls. Our results also suggest there could be a trade-off between the relative size of visual pathways and auditory pathways, similar to that reported in mammals. Finally, our results show that although there is no relationship between activity pattern and the relative size of either the tectofugal or the thalamofugal pathway, there is a positive correlation between the relative size of both visual pathways and the relative number of cells in the retinal ganglion layer.


Assuntos
Estrigiformes/anatomia & histologia , Vias Visuais/anatomia & histologia , Ciclos de Atividade , Animais , Vias Auditivas/anatomia & histologia , Contagem de Células , Especificidade da Espécie , Vias Visuais/citologia
14.
J Vis ; 12(12): 13, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23169995

RESUMO

Vertebrates possess different types of retinal specializations that vary in number, size, shape, and position in the retina. This diversity in retinal configuration has been revealed through topographic maps, which show variations in neuron density across the retina. Although topographic maps of about 300 vertebrates are available, there is no method for characterizing retinal traits quantitatively. Our goal is to present a novel method to standardize information on the position of the retinal specializations and changes in retinal ganglion cell (RGC) density across the retina from published topographic maps. We measured the position of the retinal specialization using two Cartesian coordinates and the gradient in cell density by sampling ganglion cell density values along four axes (nasal, temporal, ventral, and dorsal). Using this information, along with the peak and lowest RGC densities, we conducted discriminant function analyses (DFAs) to establish if this method is sensitive to distinguish three common types of retinal specializations (fovea, area, and visual streak). The discrimination ability of the model was higher when considering terrestrial (78%-80% correct classification) and aquatic (77%-86% correct classification) species separately than together. Our method can be used in the future to test specific hypotheses on the differences in retinal morphology between retinal specializations and the association between retinal morphology and behavioral and ecological traits using comparative methods controlling for phylogenetic effects.


Assuntos
Fóvea Central/citologia , Fóvea Central/fisiologia , Retina/citologia , Retina/fisiologia , Células Amácrinas/fisiologia , Animais , Ecologia , Humanos , Células Fotorreceptoras de Vertebrados/fisiologia , Filogenia , Células Bipolares da Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Células Horizontais da Retina/fisiologia , Especificidade da Espécie , Vertebrados
15.
Brain Behav Evol ; 80(2): 108-26, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22986827

RESUMO

In cartilaginous fishes (Chondrichthyes; sharks, skates and rays (batoids), and holocephalans), the midbrain or mesencephalon can be divided into two parts, the dorsal tectum mesencephali or optic tectum (analogous to the superior colliculus of mammals) and the ventral tegmentum mesencephali. Very little is known about interspecific variation in the relative size and organization of the components of the mesencephalon in these fishes. This study examined the relative development of the optic tectum and the tegmentum in 75 chondrichthyan species representing 32 families. This study also provided a critical assessment of attempts to quantify the size of the optic tectum in these fishes volumetrically using an idealized half-ellipsoid approach (method E), by comparing this method to measurements of the tectum from coronal cross sections (method S). Using species as independent data points and phylogenetically independent contrasts, relationships between the two midbrain structures and both brain and mesencephalon volume were assessed and the relative volume of each brain area (expressed as phylogenetically corrected residuals) was compared among species with different ecological niches (as defined by primary habitat and lifestyle). The relatively largest tecta and tegmenta were found in pelagic coastal/oceanic and oceanic sharks, benthopelagic reef sharks, and benthopelagic coastal sharks. The smallest tecta were found in all benthic sharks and batoids and the majority of bathyal (deep-sea) species. These results were consistent regardless of which method of estimating tectum volume was used. We found a highly significant correlation between optic tectum volume estimates calculated using method E and method S. Taxon-specific variation in the difference between tectum volumes calculated using the two methods appears to reflect variation in both the shape of the optic tectum relative to an idealized half-ellipsoid and the volume of the ventricular cavity. Because the optic tectum is the principal termination site for retinofugal fibers arising from the retinal ganglion cells, the relative size of this brain region has been associated with an increased reliance on vision in other vertebrate groups, including bony fishes. The neuroecological relationships between the relative size of the optic tectum and primary habitat and lifestyle we present here for cartilaginous fishes mirror those established for bony fishes; we speculate that the relative size of the optic tectum and tegmentum similarly reflects the importance of vision and sensory processing in cartilaginous fishes.


Assuntos
Bioestatística/métodos , Elasmobrânquios/anatomia & histologia , Mesencéfalo/anatomia & histologia , Colículos Superiores/anatomia & histologia , Tegmento Mesencefálico/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais , Elasmobrânquios/classificação , Peixes , Tamanho do Órgão , Filogenia , Especificidade da Espécie , Vias Visuais/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-22806571

RESUMO

Eye morphology and the retinal topography of animals that live in either 'open' (e.g., grassland) or 'enclosed' (e.g., forest) terrestrial habitats show common adaptations to constraints imposed by these different habitat types. Although relationships between habitat and the visual system are well documented in most vertebrates, relatively few studies have examined this relationship in birds. Here, we compare eye shape and retinal topography across seven species from the family Phasianidae (Galliformes) that are diurnally active in either open or enclosed habitats. Species from enclosed habitats have significantly larger corneal diameters, relative to transverse diameters, than species from open habitats, which we predict serves to enhance visual sensitivity. Retinal topography, however, was similar across all seven species and consisted of a centrally positioned area centralis and a weak horizontal visual streak, with no discernible fovea. In the Japanese quail (Coturnix japonica), there was also a dorso-temporal extension of increased neuron density and, in some specimens, a putative area dorsalis. The total number of neurons in the retinal ganglion cell layer was correlated with retinal whole-mount area. Average and peak neuron densities were similar across species, with the exception of the Japanese quail, which had greater average and peak densities. Peak anatomical spatial resolving power was also similar among species, ranging from approximately 10-13 cycles/°. Overall, the pattern of retinal topography we found in phasianids is associated with ground-foraging in birds and presumably facilitates the identification of small food items on the ground as well as other visually guided behaviors, irrespective of habitat type.


Assuntos
Olho/anatomia & histologia , Galliformes/anatomia & histologia , Galliformes/classificação , Retina/anatomia & histologia , Adaptação Fisiológica/fisiologia , Animais , Ecossistema , Galliformes/fisiologia , Células Ganglionares da Retina/citologia , Especificidade da Espécie , Campos Visuais/fisiologia
17.
Brain Behav Evol ; 79(4): 218-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22722085

RESUMO

The eyes of vertebrates show adaptations to the visual environments in which they evolve. For example, eye shape is associated with activity pattern, while retinal topography is related to the symmetry or 'openness' of the habitat of a species. Although these relationships are well documented in many vertebrates including birds, the extent to which they hold true for species within the same avian order is not well understood. Owls (Strigiformes) represent an ideal group for the study of interspecific variation in the avian visual system because they are one of very few avian orders to contain species that vary in both activity pattern and habitat preference. Here, we examined interspecific variation in eye shape and retinal topography in nine species of owl. Eye shape (the ratio of corneal diameter to eye axial length) differed among species, with nocturnal species having relatively larger corneal diameters than diurnal species. All the owl species have an area of high retinal ganglion cell (RGC) density in the temporal retina and a visual streak of increased cell density extending across the central retina from temporal to nasal. However, the organization and degree of elongation of the visual streak varied considerably among species and this variation was quantified using H:V ratios. Species that live in open habitats and/or that are more diurnally active have well-defined, elongated visual streaks and high H:V ratios (3.88-2.33). In contrast, most nocturnal and/or forest-dwelling owls have a poorly defined visual streak, a more radially symmetrical arrangement of RGCs and lower H:V ratios (1.77-1.27). The results of a hierarchical cluster analysis indicate that the apparent interspecific variation is associated with activity pattern and habitat as opposed to the phylogenetic relationships among species. In seven species, the presence of a fovea was confirmed and it is suggested that all strigid owls may possess a fovea, whereas the tytonid barn owl (Tyto alba) does not. A size-frequency analysis of cell soma area indicates that a number of different RGC classes are represented in owls, including a population of large RGCs (cell soma area >150 µm(2)) that resemble the giant RGCs reported in other vertebrates. In conclusion, eye shape and retinal topography in owls vary among species and this variation is associated with different activity patterns and habitat preferences, thereby supporting similar observations in other vertebrates.


Assuntos
Olho/citologia , Retina/citologia , Células Ganglionares da Retina/citologia , Estrigiformes/fisiologia , Acuidade Visual/fisiologia , Ciclos de Atividade , Adaptação Fisiológica , Animais , Ecossistema , Fóvea Central/citologia , Fenômenos Fisiológicos Oculares , Tamanho do Órgão , Retina/fisiologia , Especificidade da Espécie , Estrigiformes/anatomia & histologia
18.
PLoS One ; 7(5): e37816, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666395

RESUMO

In birds, there is a retinofugal projection from the brain to the retina originating from the isthmo optic nucleus (ION) in the midbrain. Despite a large number of anatomical, physiological and histochemical studies, the function of this retinofugal system remains unclear. Several functions have been proposed including: gaze stabilization, pecking behavior, dark adaptation, shifting attention, and detection of aerial predators. This nucleus varies in size and organization among some species, but the relative size and morphology of the ION has not been systematically studied. Here, we present a comparison of the relative size and morphology of the ION in 81 species of birds, representing 17 different orders. Our results show that several orders of birds, besides those previously reported, have a large, well-organized ION, including: hummingbirds, woodpeckers, coots and allies, and kingfishers. At the other end of the spectrum, parrots, herons, waterfowl, owls and diurnal raptors have relatively small ION volumes. ION also appears to be absent or unrecognizable is several taxa, including one of the basal avian groups, the tinamous, which suggests that the ION may have evolved only in the more modern group of birds, Neognathae. Finally, we demonstrate that evolutionary changes in the relative size and the cytoarchitectonic organization of ION have occurred largely independent of phylogeny. The large relative size of the ION in orders with very different lifestyles and feeding behaviors suggest there is no clear association with pecking behavior or predator detection. Instead, our results suggest that the ION is more complex and enlarged in birds that have eyes that are emmetropic in some parts of the visual field and myopic in others. We therefore posit that the ION is involved in switching attention between two parts of the retina i.e. from an emmetropic to a myopic part of the retina.


Assuntos
Aves/fisiologia , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Animais , Contagem de Células , Tamanho Celular , Evolução Molecular , Especificidade da Espécie , Vias Visuais/citologia , Vias Visuais/fisiologia
19.
Vision Res ; 62: 125-33, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521657

RESUMO

The assessment of flicker fusion frequency (FFF), the stimulus frequency at which a flickering light stimulus can no longer be resolved and appears continuous, and critical flicker fusion frequency (CFF; the highest frequency at any light intensity that an observer can resolve flicker) are useful methods for comparing temporal resolution capabilities between animals. Behavioural experiments have found that average CFFs in domestic chickens (Gallus gallus domesticus) are in the range of ca. 75-87 Hz, measured in response to full spectrum (i.e. white light plus UV) stimuli. In order to examine whether the chicken retina is able to detect flicker at higher frequencies, we used electroretinograms (ERGs) to assess FFF/CFF in adult hens from two commercial genotypes, Lohmann Selected Leghorns (LSLs) and Lohmann Browns (LBs). ERGs were recorded in response to flickering light at ten full spectrum light intensities ranging from 0.7 to 2740 cd m(-2). Two methods were used to determine FFF/CFF from the ERG recordings and these methods yielded very similar results, with average FFF ranging from ca. 20Hz at 0.7 cd m(-2) to an average CFF of ca. 105 Hz at 2740 cd m(-2). In some individuals, CFFs of 118-119 Hz were recorded. The Intensity/FFF (I/FFF) curves are double-branched with a break point representing the rod-cone transition occurring between 2.5 and 5.9 cd m(-2). No significant differences in the I/FFF curves were found between the two genotypes. At stimulus light intensities >250 cd m(-2), the ERG-derived FFF and CFF values are all higher than those from behavioural studies using the same stimuli. Although hens do not appear to be able to consciously perceive flicker above approximately 90 Hz, the finding that the ERG responses are able to remain in phase with light flickering at frequencies >100 Hz means that the retinae of domestic poultry housed in artificial light conditions may be able to resolve flicker from fluorescent lamps. As range of detrimental effects have been reported in humans as a result of exposure to such "invisible flicker", the possibility exists that flicker from fluorescent lamps also acts as stressor in domesticated birds.


Assuntos
Galinhas/fisiologia , Eletrorretinografia/métodos , Fusão Flicker/fisiologia , Animais , Feminino , Luz
20.
Vision Res ; 51(12): 1324-32, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21527269

RESUMO

To interact with its visual environment, an organism needs to perceive objects in both space and time. High temporal resolution is hence important to the fitness of diurnally active animals, not least highly active aerial species such as birds. However, temporal resolution, as assessed by flicker fusion frequency (FFF; the stimulus frequency at which a flickering light stimulus can no longer be resolved and appears continuous) or critical flicker fusion frequency (CFF; the highest flicker fusion frequency at any light intensity) has rarely been assessed in birds. In order to further our understanding of temporal resolution as a function of light intensity in birds we used behavioural experiments with domestic chickens (Gallus gallus domesticus) from an old game breed 'Gammalsvensk dvärghöna' (which is morphologically and behaviourally similar to the wildtype ancestor, the red jungle fowl, G. gallus), to generate an 'Intensity/FFF curve' (I/FFF curve) across full spectrum light intensities ranging from 0.2 to 2812 cd m⁻². The I/FFF curve is double-branched, resembling that of other chordates with a duplex retina of both rods and cones. Assuming that the branches represent rod and cone mediated responses respectively, the break point between them places the transition between scotopic and photopic vision at between 0.8 and 1.9 cd m⁻². Average FFF ranged from 19.8 Hz at the lowest light intensity to a CFF 87.0 Hz at 1375 cd m⁻². FFF dropped slightly at the highest light intensity. There was some individual variation with certain birds displaying CFFs of 90-100 Hz. The FFF values demonstrated by this non-selected breed appear to be considerably higher than other behaviourally derived FFF values for similar stimuli reported for white and brown commercial laying hens, indicating that the domestication process might have influenced temporal resolution in chicken.


Assuntos
Galinhas/fisiologia , Fusão Flicker/fisiologia , Percepção Visual/fisiologia , Animais , Comportamento Animal/fisiologia , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA