Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38535283

RESUMO

Among the most prevalent neurological disorders, epilepsy affects about 1% of the population worldwide. We previously found, using human epileptic tissues, that GABAergic neurotransmission impairment is a key mechanism that drives the pathological phenomena that ultimately lead to generation and recurrence of seizures. Using both a "microtransplantation technique" and synaptosomes preparations from drug-resistant temporal lobe epilepsies (TLEs), we used the technique of two-electrode voltage clamp to record GABA-evoked currents, focusing selectively on the synaptic "fast inhibition" mediated by low-affinity GABAA receptors. Here, we report that the use-dependent GABA current desensitization (i.e., GABA rundown, which is evoked by applying to the cells consecutive pulses of GABA, at high concentration), which is a distinguishing mark of TLE, is mainly dependent on a dysfunction that affects synaptic GABAA receptors. In addition, using the same approaches, we recorded a depolarized GABA reversal potential in synaptosomes samples from the human epileptic subicula of TLE patients. These results, which confirm previous experiments using total membranes, suggest an altered chloride homeostasis in the synaptic area. Finally, the lack of a Zn2+ block of GABA-evoked currents using the synaptosomes supports the enrichment of "synaptic fast inhibitory" GABAA receptors in this preparation. Altogether, our findings suggest a pathophysiological role of low-affinity GABAA receptors at the synapse, especially during the fast and repetitive GABA release underlying recurrent seizures.

2.
Nutr Neurosci ; : 1-13, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386276

RESUMO

Caloric restriction (CR) has been proposed as a nutritional strategy to combat chronic diseases, including neurodegenerative diseases, as well as to delay aging. However, despite the benefits of CR, questions remain about its underlying mechanisms and cellular and molecular targets.Objective: As inflammatory processes are the basis or accompany chronic diseases and aging, we investigated the protective role of CR in the event of an acute inflammatory stimulus.Methods: Peripheral inflammatory and metabolic parameters were evaluated in Wistar rats following CR and/or acute lipopolysaccharide (LPS) administration, as well as glial changes (microglia and astrocytes), in two regions of the brain (hippocampus and hypothalamus) involved in the inflammatory response. We used a protocol of 30% CR, for 4 or 8 weeks. Serum and brain parameters were analyzed by biochemical or immunological assays.Results: Benefits of CR were observed during the inflammatory challenge, where the partial reduction of serum interleukin-6, mediated by CR, attenuated the systemic response. In the central nervous system (CNS), specifically in the hippocampus, CR attenuated the response to the LPS, as evaluated by tumor necrosis factor alpha (TNFα) levels. Furthermore, in the hippocampus, CR increased the glutathione (GSH) levels, resulting in a better antioxidant response.Discussion: This study contributes to the understanding of the effects of CR, particularly in the CNS, and expands knowledge about glial cells, emphasizing their importance in neuroprotection strategies.

3.
Neurotox Res ; 40(5): 1337-1347, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057040

RESUMO

Methylglyoxal (MG) is a reactive dicarbonyl compound formed mostly via the glycolytic pathway. Elevated blood glucose levels can cause MG accumulation in plasma and cerebrospinal fluid in patients with diabetes mellitus and Alzheimer's disease. Under these disease conditions, the high reactivity of MG leads to modification of proteins and other biomolecules, generating advanced glycation end products (AGEs), which are considered mediators in neurodegenerative diseases. We investigated the integrity of the blood-brain barrier (BBB) and astrocyte response in the hippocampus to acute insult induced by MG when it was intracerebroventricularly administered to rats. Seventy-two hours later, BBB integrity was lost, as assessed by the entry of Evans dye into the brain tissue and albumin in the cerebrospinal fluid, and a decrease in aquaporin-4 and connexin-43 in the hippocampal tissue. MG did not induce changes in the hippocampal contents of RAGE in this short interval, but decreased the expression of S100B, an astrocyte-secreted protein that binds RAGE. The expression of two important transcription factors of the antioxidant response, NF-κB and Nrf2, was unchanged. However, hemeoxigenase-1 was upregulated in the MG-treated group. These data corroborate the idea that hippocampal cells are targets of MG toxicity and that BBB dysfunction and specific glial alterations induced by this compound may contribute to the behavioral and cognitive alterations observed in these animals.


Assuntos
Aquaporinas , Aldeído Pirúvico , Albuminas/metabolismo , Animais , Antioxidantes/metabolismo , Aquaporinas/metabolismo , Glicemia/metabolismo , Barreira Hematoencefálica/metabolismo , Conexinas/metabolismo , Produtos Finais de Glicação Avançada/toxicidade , Hipocampo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Aldeído Pirúvico/farmacologia , Ratos , Receptor para Produtos Finais de Glicação Avançada/metabolismo
4.
Pharmacol Biochem Behav ; 210: 173273, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536480

RESUMO

Object recognition (OR) and the Morris water maze (MWM) are classical tasks widely used to assess memory parameters and deficits in rodents. Learning processes in both tasks involve integrity of the hippocampus and associated regions, and prefrontal cortex connections. Here, we highlight the idea that these classical tests can be used to indicate memory deficits caused by models of disease that affect hippocampal function in rats, and identify some practical issues of OR and MWM, based on the literature and our experience. Additionally, we have shown that the performance of both tasks does not alter blood levels of corticosterone, considering exposure to a single task. Hence, taking into consideration the difficulties and care required during task execution, the infrastructure needed and the training of the experimenter, we suggest that OR and its variations offer minimal manageable stressful conditions, representing an effective and practical tool for hippocampal-related memory assessment of rats. Thus, OR may provide similar information to that of the MWM, despite controversy regarding hippocampus participation in OR and given due differences in the types of memory evaluated and researchers' objectives. We recommend the observation of some important precautions and details, also based on the literature and our own experience.


Assuntos
Disfunção Cognitiva/diagnóstico , Hipocampo/metabolismo , Teste do Labirinto Aquático de Morris , Reconhecimento Psicológico , Animais , Comportamento Animal , Disfunção Cognitiva/metabolismo , Corticosterona/sangue , Hipocampo/lesões , Masculino , Transtornos da Memória/diagnóstico , Ratos , Ratos Wistar , Percepção Visual
5.
Neurochem Res ; 46(2): 183-196, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33095439

RESUMO

Methylglyoxal (MG) is a by-product of glycolysis. In pathological conditions, particularly diabetes mellitus, this molecule is unbalanced, causing widespread protein glycation. In addition to protein glycation, other effects resulting from high levels of MG in the central nervous system may involve the direct modulation of GABAergic and glutamatergic neurotransmission, with evidence suggesting that the effects of MG may be related to behavioral changes and glial dysfunction. In order to evaluate the direct influence of MG on behavioral and biochemical parameters, we used a high intracerebroventricular final concentration (3 µM/µL) to assess acute effects on memory and locomotor behavior in rats, as well as the underlying alterations in glutamatergic and astroglial parameters. MG induced, 12 h after injection, a decrease in locomotor activity in the Open field and anxiolytic effects in rats submitted to elevated plus-maze. Subsequently, 36 h after surgery, MG injection also induced cognitive impairment in both short and long-term memory, as evaluated by novel object recognition task, and in short-term spatial memory, as evaluated by the Y-maze test. In addition, hippocampal glutamate uptake decreased and glutamine synthetase activity and glutathione levels diminished during seventy-two hours after infusion of MG. Interestingly, the astrocytic protein, S100B, was increased in the cerebrospinal fluid, accompanied by decreased hippocampal S100B mRNA expression, without any change in protein content. Taken together, these results may improve our understanding of how this product of glucose metabolism can induce the brain dysfunction observed in diabetic patients, as well as in other neurodegenerative conditions, and further defines the role of astrocytes in disease and therapeutics.


Assuntos
Astrócitos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , Animais , Teste de Labirinto em Cruz Elevado , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Teste de Campo Aberto/efeitos dos fármacos , Aldeído Pirúvico/administração & dosagem , Ratos Wistar
6.
Sci Rep ; 10(1): 21604, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303883

RESUMO

Zika virus (ZIKV) infection during pregnancy was associated with microcephaly in neonates, but clinical and experimental evidence indicate that ZIKV also causes neurological complications in adults. However, the changes in neuron-glial communication, which is essential for brain homeostasis, are still unknown. Here, we report that hippocampal slices from adult rats exposed acutely to ZIKV showed significant cellular alterations regarding to redox homeostasis, inflammatory process, neurotrophic functions and molecular signalling pathways associated with neurons and glial cells. Our findings support the hypothesis that ZIKV is highly neurotropic and its infection readily induces an inflammatory response, characterized by an increased expression and/or release of pro-inflammatory cytokines. We also observed changes in neural parameters, such as adenosine receptor A2a expression, as well as in the release of brain-derived neurotrophic factor and neuron-specific enolase, indicating plasticity synaptic impairment/neuronal damage. In addition, ZIKV induced a glial commitment, with alterations in specific and functional parameters such as aquaporin 4 expression, S100B secretion and glutathione synthesis. ZIKV also induced p21 senescence-associated gene expression, indicating that ZIKV may induce early senescence. Taken together, our results indicate that ZIKV-induced neuroinflammation, involving nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NFκB) pathways, affects important aspects of neuron-glia communication. Therefore, although ZIKV infection is transient, long-term consequences might be associated with neurological and/or neurodegenerative diseases.


Assuntos
Comunicação Celular , Hipocampo/patologia , Neuroglia/patologia , Neurônios/patologia , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar
7.
Life Sci ; 251: 117587, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224027

RESUMO

Diabetes mellitus (DM) is a serious public health problem and can cause long-term damage to the brain, resulting in cognitive impairment in these patients. Insulin therapy for type 1 DM (DM1) can achieve overall blood glucose control, but glycemic variations can occur during injection intervals, which may contribute to some complications. Among the additional therapies available for DM1 treatment is the implantation of insulin-producing cells (IPCs) to attenuate hyperglycemia and even reverse diabetes. Here, we studied the strategy of implanting IPCs obtained from mesenchymal stromal cells (MSCs) from adipose tissue, comparing two different IPC implant sites, subcapsular renal (SR) and subcutaneous (SC), to investigate their putative protection against hippocampal damage, induced by STZ, in a rat DM1 model. Both implants improved hyperglycemia and reduced the serum content of advanced-glycated end products in diabetic rats, but serum insulin was not observed in the SC group. The SC-implanted group demonstrated ameliorated cognitive impairment (evaluated by novel object recognition) and modulation of hippocampal astroglial reactivity (evaluated by S100B and GFAP). Using GFP+ cell implants, the survival of cells at the implant sites was confirmed, as well as their migration to the pancreas and hippocampus. The presence of undifferentiated MSCs in our IPC preparation may explain the peripheral reduction in AGEs and subsequent cognitive impairment recovery, mediated by autophagic depuration and immunomodulation at the hippocampus, respectively. Together, these data reinforce the importance of MSCs for use in neuroprotective strategies, and highlight the logistic importance of the subcutaneous route for their administration.


Assuntos
Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Insulina/metabolismo , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Animais , Glicemia/metabolismo , Disfunção Cognitiva/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Produtos Finais de Glicação Avançada/sangue , Hipocampo/metabolismo , Hiperglicemia/terapia , Insulina/sangue , Masculino , Pâncreas/metabolismo , Ratos , Ratos Endogâmicos WKY
8.
Biomed Res Int ; 2015: 870389, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685814

RESUMO

Alzheimer's disease (AD) is a progressive and neurodegenerative pathology that can affect people over 65 years of age. It causes several complications, such as behavioral changes, language deficits, depression, and memory impairments. One of the methods used to treat AD is the increase of acetylcholine (ACh) in the brain by using acetylcholinesterase inhibitors (AChEIs). In this study, we used the ZINC databank and the Lipinski's rule of five to perform a virtual screening and a molecular docking (using Auto Dock Vina 1.1.1) aiming to select possible compounds that have quaternary ammonium atom able to inhibit acetylcholinesterase (AChE) activity. The molecules were obtained by screening and further in vitro assays were performed to analyze the most potent inhibitors through the IC50 value and also to describe the interaction models between inhibitors and enzyme by molecular docking. The results showed that compound D inhibited AChE activity from different vertebrate sources and butyrylcholinesterase (BChE) from Equus ferus (EfBChE), with IC50 ranging from 1.69 ± 0.46 to 5.64 ± 2.47 µM. Compound D interacted with the peripheral anionic subsite in both enzymes, blocking substrate entrance to the active site. In contrast, compound C had higher specificity as inhibitor of EfBChE. In conclusion, the screening was effective in finding inhibitors of AChE and BuChE from different organisms.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Acetilcolina/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Equidae/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA