Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 16(2): 134-142, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31819269

RESUMO

Recent studies have implicated the nucleosome acidic patch in the activity of ATP-dependent chromatin remodeling machines. We used a photocrosslinking-based nucleosome profiling technology (photoscanning) to identify a conserved basic motif within the catalytic subunit of ISWI remodelers, SNF2h, which engages this nucleosomal epitope. This region of SNF2h is essential for chromatin remodeling activity in a reconstituted biochemical system and in cells. Our studies suggest that the basic motif in SNF2h plays a critical role in anchoring the remodeler to the nucleosomal surface. We also examine the functional consequences of several cancer-associated histone mutations that map to the nucleosome acidic patch. Kinetic studies using physiologically relevant heterotypic nucleosomal substrates ('Janus' nucleosomes) indicate that these cancer-associated mutations can disrupt regularly spaced chromatin structure by inducing ISWI-mediated unidirectional nucleosome sliding. These results indicate a potential mechanistic link between oncogenic histones and alterations to the chromatin landscape.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Nucleossomos/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Cisteína/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nature ; 548(7669): 607-611, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28767641

RESUMO

ATP-dependent chromatin remodellers regulate access to genetic information by controlling nucleosome positions in vivo. However, the mechanism by which remodellers discriminate between different nucleosome substrates is poorly understood. Many chromatin remodelling proteins possess conserved protein domains that interact with nucleosomal features. Here we used a quantitative high-throughput approach, based on the use of a DNA-barcoded mononucleosome library, to profile the biochemical activity of human ISWI family remodellers in response to a diverse set of nucleosome modifications. We show that accessory (non-ATPase) subunits of ISWI remodellers can distinguish between differentially modified nucleosomes, directing remodelling activity towards specific nucleosome substrates according to their modification state. Unexpectedly, we show that the nucleosome acidic patch is necessary for maximum activity of all ISWI remodellers evaluated. This dependence also extends to CHD and SWI/SNF family remodellers, suggesting that the acidic patch may be generally required for chromatin remodelling. Critically, remodelling activity can be regulated by modifications neighbouring the acidic patch, signifying that it may act as a tunable interaction hotspot for ATP-dependent chromatin remodellers and, by extension, many other chromatin effectors that engage this region of the nucleosome surface.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Nucleossomos/química , Nucleossomos/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Código de Barras de DNA Taxonômico , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleossomos/genética , Subunidades Proteicas/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(4): 681-686, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069948

RESUMO

Recent advances in the field of programmable DNA-binding proteins have led to the development of facile methods for genomic localization of genetically encodable entities. Despite the extensive utility of these tools, locus-specific delivery of synthetic molecules remains limited by a lack of adequate technologies. Here we combine the flexibility of chemical synthesis with the specificity of a programmable DNA-binding protein by using protein trans-splicing to ligate synthetic elements to a nuclease-deficient Cas9 (dCas9) in vitro and subsequently deliver the dCas9 cargo to live cells. The versatility of this technology is demonstrated by delivering dCas9 fusions that include either the small-molecule bromodomain and extra-terminal family bromodomain inhibitor JQ1 or a peptide-based PRC1 chromodomain ligand, which are capable of recruiting endogenous copies of their cognate binding partners to targeted genomic binding sites. We expect that this technology will allow for the genomic localization of a wide array of small molecules and modified proteinaceous materials.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Epigenômica/métodos , Escherichia coli/metabolismo , Genômica/métodos , Proteínas Recombinantes/metabolismo
4.
J Biol Chem ; 291(51): 26468-26477, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27803161

RESUMO

Protein acetylation is a prevalent posttranslational modification that is regulated by diverse acetyltransferase enzymes. Although histone acetyltransferases (HATs) have been well characterized both structurally and mechanistically, far less is known about non-histone acetyltransferase enzymes. The human ESCO1 and ESCO2 paralogs acetylate the cohesin complex subunit SMC3 to regulate the separation of sister chromatids during mitosis and meiosis. Missense mutations within the acetyltransferase domain of these proteins correlate with diseases, including endometrial cancers and Roberts syndrome. Despite their biological importance, the mechanisms underlying acetylation by the ESCO proteins are not understood. Here, we report the X-ray crystal structure of the highly conserved zinc finger-acetyltransferase moiety of ESCO1 with accompanying structure-based mutagenesis and biochemical characterization. We find that the ESCO1 acetyltransferase core is structurally homologous to the Gcn5 HAT, but contains unique additional features including a zinc finger and an ∼40-residue loop region that appear to play roles in protein stability and SMC3 substrate binding. We identify key residues that play roles in substrate binding and catalysis, and rationalize the functional consequences of disease-associated mutations. Together, these studies reveal the molecular basis for SMC3 acetylation by ESCO1 and have broader implications for understanding the structure/function of non-histone acetyltransferases.


Assuntos
Acetiltransferases/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Humanos , Mutação de Sentido Incorreto , Domínios Proteicos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo , Coesinas
5.
Structure ; 23(2): 332-41, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25619998

RESUMO

N-terminal acetylation is among the most common protein modifications in eukaryotes and is mediated by evolutionarily conserved N-terminal acetyltransferases (NATs). NatD is among the most selective NATs; its only known substrates are histones H4 and H2A, containing the N-terminal sequence SGRGK in humans. Here we characterize the molecular basis for substrate-specific acetylation by NatD by reporting its crystal structure bound to cognate substrates and performing related biochemical studies. A novel N-terminal segment wraps around the catalytic core domain to make stabilizing interactions, and the α1-α2 and ß6-ß7 loops adopt novel conformations to properly orient the histone N termini in the binding site. Ser1 and Arg3 of the histone make extensive contacts to highly conserved NatD residues in the substrate binding pocket, and flanking glycine residues also appear to contribute to substrate-specific binding by NatD, together defining a Ser-Gly-Arg-Gly recognition sequence. These studies have implications for understanding substrate-specific acetylation by NAT enzymes.


Assuntos
Histonas/química , Acetiltransferase N-Terminal D/química , Schizosaccharomyces/enzimologia , Acetilação , Sequência de Aminoácidos , Histonas/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Acetiltransferase N-Terminal D/genética , Acetiltransferase N-Terminal D/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Eletricidade Estática , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA