Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Biomed Opt ; 29(3): 036004, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532927

RESUMO

Significance: There is a significant need for the generation of virtual histological information from coronary optical coherence tomography (OCT) images to better guide the treatment of coronary artery disease (CAD). However, existing methods either require a large pixel-wise paired training dataset or have limited capability to map pathological regions. Aim: The aim of this work is to generate virtual histological information from coronary OCT images, without a pixel-wise paired training dataset while capable of providing pathological patterns. Approach: We design a structurally constrained, pathology-aware, transformer generative adversarial network, namely structurally constrained pathology-aware convolutional transformer generative adversarial network (SCPAT-GAN), to generate virtual stained H&E histology from OCT images. We quantitatively evaluate the quality of virtual stained histology images by measuring the Fréchet inception distance (FID) and perceptual hash value (PHV). Moreover, we invite experienced pathologists to evaluate the virtual stained images. Furthermore, we visually inspect the virtual stained image generated by SCPAT-GAN. Also, we perform an ablation study to validate the design of the proposed SCPAT-GAN. Finally, we demonstrate 3D virtual stained histology images. Results: Compared to previous research, the proposed SCPAT-GAN achieves better FID and PHV scores. The visual inspection suggests that the virtual histology images generated by SCPAT-GAN resemble both normal and pathological features without artifacts. As confirmed by the pathologists, the virtual stained images have good quality compared to real histology images. The ablation study confirms the effectiveness of the combination of proposed pathological awareness and structural constraining modules. Conclusions: The proposed SCPAT-GAN is the first to demonstrate the feasibility of generating both normal and pathological patterns without pixel-wisely supervised training. We expect the SCPAT-GAN to assist in the clinical evaluation of treating the CAD by providing 2D and 3D histopathological visualizations.


Assuntos
Doença da Artéria Coronariana , Tomografia de Coerência Óptica , Humanos , Coração , Artefatos , Coloração e Rotulagem , Processamento de Imagem Assistida por Computador
2.
Sci Rep ; 13(1): 21638, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062139

RESUMO

Mitochondria morphology and function, and their quality control by mitophagy, are essential for heart function. We investigated whether these are influenced by time of the day (TOD), sex, and fed or fasting status, using transmission electron microscopy (EM), mitochondrial electron transport chain (ETC) activity, and mito-QC reporter mice. We observed peak mitochondrial number at ZT8 in the fed state, which was dependent on the intrinsic cardiac circadian clock, as hearts from cardiomyocyte-specific BMAL1 knockout (CBK) mice exhibit different TOD responses. In contrast to mitochondrial number, mitochondrial ETC activities do not fluctuate across TOD, but decrease immediately and significantly in response to fasting. Concurrent with the loss of ETC activities, ETC proteins were decreased with fasting, simultaneous with significant increases of mitophagy, mitochondrial antioxidant protein SOD2, and the fission protein DRP1. Fasting-induced mitophagy was lost in CBK mice, indicating a direct role of BMAL1 in regulating mitophagy. This is the first of its kind report to demonstrate the interactions between sex, fasting, and TOD on cardiac mitochondrial structure, function and mitophagy. These studies provide a foundation for future investigations of mitochondrial functional perturbation in aging and heart diseases.


Assuntos
Fatores de Transcrição ARNTL , Miócitos Cardíacos , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Miócitos Cardíacos/metabolismo , Mitocôndrias/metabolismo , Camundongos Knockout , Jejum , Dinâmica Mitocondrial/fisiologia
3.
J Biomed Opt ; 28(3): 036008, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36992694

RESUMO

Significance: Optical coherence tomography (OCT) has become increasingly essential in assisting the treatment of coronary artery disease (CAD). However, unidentified calcified regions within a narrowed artery could impair the outcome of the treatment. Fast and objective identification is paramount to automatically procuring accurate readings on calcifications within the artery. Aim: We aim to rapidly identify calcification in coronary OCT images using a bounding box and reduce the prediction bias in automated prediction models. Approach: We first adopt a deep learning-based object detection model to rapidly draw the calcified region from coronary OCT images using a bounding box. We measure the uncertainty of predictions based on the expected calibration errors, thus assessing the certainty level of detection results. To calibrate confidence scores of predictions, we implement dependent logistic calibration using each detection result's confidence and center coordinates. Results: We implemented an object detection module to draw the boundary of the calcified region at a rate of 140 frames per second. With the calibrated confidence score of each prediction, we lower the uncertainty of predictions in calcification detection and eliminate the estimation bias from various object detection methods. The calibrated confidence of prediction results in a confidence error of ∼ 0.13 , suggesting that the confidence calibration on calcification detection could provide a more trustworthy result. Conclusions: Given the rapid detection and effective calibration of the proposed work, we expect that it can assist in clinical evaluation of treating the CAD during the imaging-guided procedure.


Assuntos
Calcinose , Doença da Artéria Coronariana , Humanos , Tomografia de Coerência Óptica/métodos , Calibragem , Incerteza , Valor Preditivo dos Testes , Vasos Coronários/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico por imagem , Calcinose/diagnóstico por imagem
4.
Cardiovasc Pathol ; 63: 107497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36375720

RESUMO

Sudden cardiac death is, by definition, an unexpected, untimely death caused by a cardiac condition in a person with known or unknown heart disease. This major international public health problem accounts for approximately 15-20% of all deaths. Typically more common in older adults with acquired heart disease, SCD also can occur in the young where the cause is more likely to be a genetically transmitted process. As these inherited disease processes can affect multiple family members, it is critical that these deaths are appropriately and thoroughly investigated. Across the United States, SCD cases in those less than 40 years of age will often fall under medical examiner/coroner jurisdiction resulting in scene investigation, review of available medical records and a complete autopsy including toxicological and histological studies. To date, there have not been consistent or uniform guidelines for cardiac examination in these cases. In addition, many medical examiner/coroner offices are understaffed and/or underfunded, both of which may hamper specialized examinations or studies (e.g., molecular testing). Use of such guidelines by pathologists in cases of SCD in decedents aged 1-39 years of age could result in life-saving medical intervention for other family members. These recommendations also may provide support for underfunded offices to argue for the significance of this specialized testing. As cardiac examinations in the setting of SCD in the young fall under ME/C jurisdiction, this consensus paper has been developed with members of the Society of Cardiovascular Pathology working with cardiovascular pathology-trained, practicing forensic pathologists.


Assuntos
Cardiopatias , Patologistas , Humanos , Idoso , Adulto , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/patologia , Cardiopatias/complicações , Autopsia/métodos , Coração
5.
Ann Transplant ; 27: e935338, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35789146

RESUMO

BACKGROUND Although improving, survival after pig orthotopic heart transplantation (OHTx) in baboons has been mixed and largely poor. The causes for the high incidence of early failure remain uncertain. MATERIAL AND METHODS We have carried out pig OHTx in 4 baboons. Two died or were euthanized within hours, and 2 survived for 3 and 8 months, respectively. There was evidence of a significant 'cytokine storm' in the immediate post-OHTx period with the elevations in IL-6 correlating closely with the final outcome. RESULTS All 4 baboons demonstrated features suggestive of respiratory dysfunction, including increased airway resistance, hypoxia, and tachypnea. Histopathological observations of pulmonary infiltration by neutrophils and, notably, eosinophils within vessels and in the perivascular and peribronchiolar space, with minimal cardiac pathology, suggested a role for early lung acute inflammation. In one, features suggestive of transfusion-related acute lung injury were present. The 2 longer-term survivors died of (i) a cardiac dysrhythmia with cellular infiltration around the conducting tissue (at 3 months), and (ii) mixed cellular and antibody-mediated rejection (at 8 months). CONCLUSIONS These initial findings indicate a potential role of acute lung injury early after OHTx. If this response can be prevented, increased survival may result, providing an opportunity to evaluate the factors affecting long-term survival.


Assuntos
Transplante de Coração , Animais , Anticorpos , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos , Pulmão , Papio , Suínos , Transplante Heterólogo/métodos
6.
IEEE Trans Biomed Eng ; 69(12): 3667-3677, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35594212

RESUMO

Coronary artery disease (CAD) is a cardiovascular condition with high morbidity and mortality. Intravascular optical coherence tomography (IVOCT) has been considered as an optimal imagining system for the diagnosis and treatment of CAD. Constrained by Nyquist theorem, dense sampling in IVOCT attains high resolving power to delineate cellular structures/features. There is a trade-off between high spatial resolution and fast scanning rate for coronary imaging. In this paper, we propose a viable spectral-spatial acquisition method that down-scales the sampling process in both spectral and spatial domain while maintaining high quality in image reconstruction. The down-scaling schedule boosts data acquisition speed without any hardware modifications. Additionally, we propose a unified multi-scale reconstruction framework, namely Multiscale-Spectral-Spatial-Magnification Network (MSSMN), to resolve highly down-scaled (compressed) OCT images with flexible magnification factors. We incorporate the proposed methods into Spectral Domain OCT (SD-OCT) imaging of human coronary samples with clinical features such as stent and calcified lesions. Our experimental results demonstrate that spectral-spatial down-scaled data can be better reconstructed than data that are down-scaled solely in either spectral or spatial domain. Moreover, we observe better reconstruction performance using MSSMN than using existing reconstruction methods. Our acquisition method and multi-scale reconstruction framework, in combination, may allow faster SD-OCT inspection with high resolution during coronary intervention.


Assuntos
Doença da Artéria Coronariana , Aprendizado Profundo , Humanos , Tomografia de Coerência Óptica/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Stents
7.
J Pathol Inform ; 12(1): 48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34934523

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has increased the use of technology for communication including departmental conferences, working remotely, and distance teaching. Methods to enable these activities should be developed and promulgated. OBJECTIVE: To repurpose a preexisting educational website to enable the development of a COVID-19 autopsy biorepository to support distance teaching and COVID-19 research. METHODS: After consent was obtained, autopsies were performed on patients with a confirmed positive severe acute respiratory syndrome coronavirus-2 reverse-transcriptase-polymerase-chain reaction test. Autopsies were performed according to a COVID-19 protocol, and all patients underwent both gross and microscopic examination. The H and E histology slides were scanned using a Leica Biosystems Aperio CS ScanScope whole slide scanner and the digital slide files were converted to deep zoom images that could be uploaded to the University of Alabama at Birmingham (UAB) Pathology Educational Instructional Resource website where virtual microscopy of the slides is available. RESULTS: A total of 551 autopsy slides from 24 UAB COVID-19 cases, 1 influenza H1N1 case and 1 tuberculosis case were scanned and uploaded. Five separate COVID-19 research teams used the digital slides remotely with or without a pathologist on a Zoom call. The scanned slides were used to produce one published case report and one published research project. The digital COVID-19 autopsy biorepository was routinely used for educational conferences and research meetings locally, nationally and internationally. CONCLUSION: The repurposing of a pre-existing website enabled telepathology consultation for research and education purposes. Combined with other communication technology (Zoom) this achievement highlights what is possible using pre-existing technologies during a global pandemic.

8.
Cardiovasc Pathol ; 54: 107370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34273507

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is commonly associated with myocardial injury and heart failure. The pathophysiology behind this phenomenon remains unclear, with many diverse and multifaceted hypotheses. To contribute to this understanding, we describe the underlying cardiac findings in fifty patients who died with coronavirus disease 2019 (COVID-19). METHODS: Included were autopsies performed on patients with a positive SARS-CoV-2 reverse-transcriptase-polymerase-chain reaction test from the index hospitalization. In the case of out-of-hospital death, patients were included if post-mortem testing was positive. Complete autopsies were performed according to a COVID-19 safety protocol, and all patients underwent both macroscopic and microscopic examination. If available, laboratory findings and echocardiograms were reported. RESULTS: The median age of the decedents was 63.5 years. The most common comorbidities included hypertension (90.0%), diabetes (56.0%) and obesity (50.0%). Lymphocytic inflammatory infiltrates in the heart were present in eight (16.0%) patients, with focal myocarditis present in two (4.0%) patients. Acute myocardial ischemia was observed in eight (16.0%) patients. The most common findings were myocardial fibrosis (80.0%), hypertrophy (72.0%), and microthrombi (66.0%). The most common causes of death were COVID-19 pneumonia in 18 (36.0%), COVID-19 pneumonia with bacterial superinfection in 12 (24.0%), and COVID-19 pneumonia with pulmonary embolism in 10 (20.0%) patients. CONCLUSIONS: Cardiovascular comorbidities were prevalent, and pathologic changes associated with hypertensive and atherosclerotic cardiovascular disease were the most common findings. Despite markedly elevated inflammatory markers and cardiac enzymes, few patients exhibited inflammatory infiltrates or necrosis within cardiac myocytes. A unifying pathophysiologic mechanism behind myocardial injury in COVID-19 remains elusive, and additional autopsy studies are needed.


Assuntos
COVID-19/patologia , Cardiopatias/patologia , Miocárdio/patologia , SARS-CoV-2/patogenicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/mortalidade , Aterosclerose/patologia , Autopsia , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Comorbidade , Feminino , Cardiopatias/imunologia , Cardiopatias/mortalidade , Cardiopatias/virologia , Interações Hospedeiro-Patógeno , Humanos , Hipertensão/mortalidade , Hipertensão/patologia , Mediadores da Inflamação/análise , Masculino , Pessoa de Meia-Idade , Miocárdio/imunologia , Necrose , SARS-CoV-2/imunologia , Regulação para Cima
9.
Surg Neurol Int ; 12: 2, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500817

RESUMO

BACKGROUND: Intravenous (IV) methamphetamine abuse is associated with a variety of short- and long-term effects on the nervous system, some of which have yet to be fully elucidated. One known systemic complication that has not been described in nervous system tissues is the deposition of substrate crystals contained in injectable drugs. CASE DESCRIPTION: An unusual case is presented of a 35-year-old active IV methamphetamine abuser with posterior reversible encephalopathy syndrome (PRES) who subsequently developed multifocal bilateral cerebellar enhancing lesions and leptomeningeal enhancement due to biopsy-proven crystalline deposits. CONCLUSION: Although large crystalline substances will not normally penetrate the blood-brain barrier (BBB), during a state of BBB compromise such as with PRES, talc deposition may occur in the central nervous system.

10.
Front Aging ; 2: 670267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35822027

RESUMO

Transmission electron microscopy (TEM) has long been an important technique, capable of high degree resolution and visualization of subcellular structures and organization. Over the last 20 years, TEM has gained popularity in the cardiovascular field to visualize changes at the nanometer scale in cardiac ultrastructure during cardiovascular development, aging, and a broad range of pathologies. Recently, the cardiovascular TEM enabled the studying of several signaling processes impacting mitochondrial function, such as mitochondrial fission/fusion, autophagy, mitophagy, lysosomal degradation, and lipophagy. The goals of this review are to provide an overview of the current usage of TEM to study cardiac ultrastructural changes; to understand how TEM aided the visualization of mitochondria, autophagy, and mitophagy under normal and cardiovascular disease conditions; and to discuss the overall advantages and disadvantages of TEM and potential future capabilities and advancements in the field.

11.
PLoS One ; 15(3): e0230358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32208424

RESUMO

Endothelial dysfunction is a critical event in vascular inflammation characterized, in part, by elevated surface expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). ICAM-1 is heavily N-glycosylated, and like other surface proteins, it is largely presumed that fully processed, complex N-glycoforms are dominant. However, our recent studies suggest that hypoglycosylated or high mannose (HM)-ICAM-1 N-glycoforms are also expressed on the cell surface during endothelial dysfunction, and have higher affinity for monocyte adhesion and regulate outside-in endothelial signaling by different mechanisms. Whether different ICAM-1 N-glycoforms are expressed in vivo during disease is unknown. In this study, using the proximity ligation assay, we assessed the relative formation of high mannose, hybrid and complex α-2,6-sialyated N-glycoforms of ICAM-1 in human and mouse models of atherosclerosis, as well as in arteriovenous fistulas (AVF) of patients on hemodialysis. Our data demonstrates that ICAM-1 harboring HM or hybrid epitopes as well as ICAM-1 bearing α-2,6-sialylated epitopes are present in human and mouse atherosclerotic lesions. Further, HM-ICAM-1 positively associated with increased macrophage burden in lesions as assessed by CD68 staining, whereas α-2,6-sialylated ICAM-1 did not. Finally, both HM and α-2,6-sialylated ICAM-1 N-glycoforms were present in hemodialysis patients who had AVF maturation failure compared to successful AVF maturation. Collectively, these data provide evidence that HM- ICAM-1 N-glycoforms are present in vivo, and at levels similar to complex α-2,6-sialylated ICAM-1 underscoring the need to better understand their roles in modulating vascular inflammation.


Assuntos
Aterosclerose/patologia , Endotélio Vascular/patologia , Inflamação/patologia , Molécula 1 de Adesão Intercelular/imunologia , Isoformas de Proteínas/análise , Adulto , Idoso , Animais , Artérias/citologia , Artérias/patologia , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Aterosclerose/imunologia , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Epitopos/análise , Epitopos/imunologia , Epitopos/metabolismo , Feminino , Glicosilação , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/imunologia , Molécula 1 de Adesão Intercelular/análise , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/imunologia , Masculino , Manose/metabolismo , Camundongos , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Ácido N-Acetilneuramínico/metabolismo , Isoformas de Proteínas/metabolismo , Adulto Jovem
12.
Antioxid Redox Signal ; 32(18): 1293-1312, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32064894

RESUMO

Aims: Redox homeostasis is tightly controlled and regulates key cellular signaling pathways. The cell's antioxidant response provides a natural defense against oxidative stress, but excessive antioxidant generation leads to reductive stress (RS). This study elucidated how chronic RS, caused by constitutive activation of nuclear erythroid related factor-2 (caNrf2)-dependent antioxidant system, drives pathological myocardial remodeling. Results: Upregulation of antioxidant transcripts and proteins in caNrf2-TG hearts (TGL and TGH; transgenic-low and -high) dose dependently increased glutathione (GSH) redox potential and resulted in RS, which over time caused pathological cardiac remodeling identified as hypertrophic cardiomyopathy (HCM) with abnormally increased ejection fraction and diastolic dysfunction in TGH mice at 6 months of age. While the TGH mice exhibited 60% mortality at 18 months of age, the rate of survival in TGL was comparable with nontransgenic (NTG) littermates. Moreover, TGH mice had severe cardiac remodeling at ∼6 months of age, while TGL mice did not develop comparable phenotypes until 15 months, suggesting that even moderate RS may lead to irreversible damages of the heart over time. Pharmacologically blocking GSH biosynthesis using BSO (l-buthionine-SR-sulfoximine) at an early age (∼1.5 months) prevented RS and rescued the TGH mice from pathological cardiac remodeling. Here we demonstrate that chronic RS causes pathological cardiomyopathy with diastolic dysfunction in mice due to sustained activation of antioxidant signaling. Innovation and Conclusion: Our findings demonstrate that chronic RS is intolerable and adequate to induce heart failure (HF). Antioxidant-based therapeutic approaches for human HF should consider a thorough evaluation of redox state before the treatment.


Assuntos
Antioxidantes/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Animais , Cardiomiopatia Hipertrófica/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Estresse Oxidativo , Disfunção Ventricular Esquerda/patologia
13.
JACC Case Rep ; 2(2): 203-209, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34317205

RESUMO

Ipilimumab and nivolumab for melanoma induced smoldering myocarditis remitting with steroids. Rechallenge with nivolumab produced steroid-refractory myocarditis confirmed by electron microscopy. Tacrolimus and mycophenolate transiently reduced inflammation, but antithymocyte globulin induced remission. Cardiomyopathy with fatty infiltration ensued, but the patient succumbed to rampant melanoma progression after lymphocyte depletion. (Level of Difficulty: Advanced.).

14.
Hum Mol Genet ; 29(3): 369-381, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816043

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease. There is accumulating evidence that HD patients have increased prevalence of conduction abnormalities and compromised sinoatrial node function which could lead to increased risk for arrhythmia. We used mutant Huntingtin (mHTT) expressing bacterial artificial chromosome Huntington's disease mice to determine if they exhibit electrocardiogram (ECG) abnormalities involving cardiac conduction that are known to increase risk of sudden arrhythmic death in humans. We obtained surface ECGs and analyzed arrhythmia susceptibility; we observed prolonged QRS duration, increases in PVCs as well as PACs. Abnormal histological and structural changes that could lead to cardiac conduction system dysfunction were seen. Finally, we observed decreases in desmosomal proteins, plakophilin-2 and desmoglein-2, which have been reported to cause cardiac arrhythmias and reduced conduction. Our study indicates that mHTT could cause progressive cardiac conduction system pathology that could increase the susceptibility to arrhythmias and sudden cardiac death in HD patients.


Assuntos
Arritmias Cardíacas/patologia , Modelos Animais de Doenças , Eletrocardiografia/métodos , Sistema de Condução Cardíaco/patologia , Proteína Huntingtina/genética , Doença de Huntington/complicações , Neurônios/patologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Sistema de Condução Cardíaco/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
15.
Front Cardiovasc Med ; 6: 68, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31245386

RESUMO

Although exercise derived activation of Nrf2 signaling augments myocardial antioxidant signaling, the molecular mechanisms underlying the benefits of moderate exercise training (MET) in the heart remain elusive. Here we hypothesized that exercise training stabilizes Nrf2-dependent antioxidant signaling, which then protects the myocardium from isoproterenol-induced damage. The present study assessed the effects of 6 weeks of MET on the Nrf2/antioxidant function, glutathione redox state, and injury in the myocardium of C57/BL6J mice that received isoproterenol (ISO; 50 mg/kg/day for 7 days). ISO administration significantly reduced the Nrf2 promoter activity (p < 0.05) and downregulated the expression of cardiac antioxidant genes (Gclc, Nqo1, Cat, Gsr, and Gst-µ) in the untrained (UNT) mice. Furthermore, increased oxidative stress with severe myocardial injury was evident in UNT+ISO when compared to UNT mice receiving PBS under basal condition. Of note, MET stabilized the Nrf2-promoter activity and upheld the expression of Nrf2-dependent antioxidant genes in animals receiving ISO, and attenuated the oxidative stress-induced myocardial damage. Echocardiography analysis revealed impaired diastolic ventricular function in UNT+ISO mice, but this was partially normalized in the MET animals. Interestingly, while there was a marginal reduction in ubiquitinated proteins in MET mice that received ISO, the pathological signs were attenuated along with near normal cardiac function in response to exercise training. Thus, moderate intensity exercise training conferred protection against ISO-induced myocardial injury by augmentation of Nrf2-antioxidant signaling and attenuation of isoproterenol-induced oxidative stress.

16.
Redox Biol ; 27: 101212, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31155513

RESUMO

Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2/Nrf2) is an inducible transcription factor that is essential for maintenance of redox signaling in response to stress. This suggests that if Nrf2 expression response could be enhanced for a defined physiological pro-oxidant stress then it would be protective. This has important implications for the therapeutic manipulation of the Keap1/Nrf2 signaling pathway which is now gaining a lot of attention. We tested this hypothesis through the generation of Nrf2 transgene expression mouse model with and without isoproterenol-induced cardiac stress. Cardiac-specific mouse Nrf2 transgenic (mNrf2-TG) and non-transgenic (NTG) mice were subjected to isoproterenol (ISO) treatment and assessed for myocardial structure, function (echocardiography and electrocardiography), and glutathione redox state. Myocardial infarction and fibrosis along with increased inflammation leading to myocardial dysfunction was noted in NTG mice exposed to ISO, while mNrf2-TG hearts were resistant to the ISO insult. Preservation of myocardial structure and function in the mNrf2-TG mice was associated with the enhanced Nrf2 expression displayed in these hearts with an increased basal and post-treatment expression of redox modulatory genes and an overall enhanced antioxidant status. Of note, myocardium of ISO-treated TG mice displayed significantly increased stabilization of the KEAP1-NRF2 complex and enhanced release of NRF2 to the nucleus resulting in overall decreased pro-oxidant markers. Taken together, we suggest that a basal enhanced Nrf2 expression in mouse heart results in maintenance of redox homeostasis and counteracts ISO-induced oxidative stress, and suppresses pathological remodeling. These data suggest that an alternative therapeutic approach to enhance the efficacy of the Keap1-Nrf2 system is to stimulate basal expression of Nrf2.


Assuntos
Isoproterenol/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Glutationa/metabolismo , Coração/efeitos dos fármacos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
17.
J Vasc Access ; 20(1): 31-40, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29742957

RESUMO

INTRODUCTION:: Several histologic features have been identified in the upper-extremity arteries and veins of patients with advanced chronic kidney disease, which may affect arteriovenous fistula maturation. However, it is unclear whether these chronic kidney disease vascular features are abnormal. METHODS:: We obtained upper-extremity arterial and venous specimens from 125 advanced chronic kidney disease patients undergoing arteriovenous fistula creation and from 15 control subjects. We quantified medial fibrosis, micro-calcification, and intimal hyperplasia with appropriate histology stains. We characterized medial collagen fiber configuration in second-harmonic-generation microscopy images for the fiber anisotropy index and the dominant fiber direction. RESULTS:: The advanced chronic kidney disease patients were significantly younger than control subjects (53 ± 14 years vs 76 ± 11 years, p < 0.001). After controlling for age, the chronic kidney disease patients had greater arterial medial fibrosis (69% ± 14% vs 51% ± 10%, p < 0.001) and greater arterial micro-calcification (3.03% ± 5.17% vs 0.01% ± 0.03%, p = 0.02), but less arterial intimal thickness (30 ± 25 µm vs 63 ± 25 µm, p < 0.001), as compared to control subjects. The anisotropy index of medial collagen fibers was lower in both arteries (0.24 ± 0.10 vs 0.44 ± 0.04, p < 0.001) and veins (0.28 ± 0.09 vs 0.53 ± 0.10, p < 0.001) in chronic kidney disease patients, indicating that orientation of the fibers was more disordered. The dominant direction of medial collagen fibers in chronic kidney disease patients was greater in the arteries (49.3° ± 23.6° vs 4.0° ± 2.0°, p < 0.001) and the veins (30.0° ± 19.6° vs 3.9° ± 2.1°, p < 0.001), indicating that the fibers in general were aligned more perpendicular to the lumen. CONCLUSION:: Advanced chronic kidney disease is associated with several abnormalities in vascular histology and collagen fiber configuration. Future research is needed to investigate whether these abnormalities affect the maturation outcomes of arteriovenous fistulas.


Assuntos
Artérias/patologia , Derivação Arteriovenosa Cirúrgica , Colágenos Fibrilares/análise , Diálise Renal , Insuficiência Renal Crônica/terapia , Extremidade Superior/irrigação sanguínea , Calcificação Vascular/patologia , Veias/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artérias/química , Artérias/cirurgia , Estudos de Casos e Controles , Feminino , Fibrose , Humanos , Masculino , Pessoa de Meia-Idade , Neointima , Estudos Prospectivos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Fatores de Risco , Túnica Média/patologia , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Veias/química , Veias/cirurgia
18.
Lab Invest ; 99(3): 371-386, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30089854

RESUMO

Ischemic cardiomyopathy (ICM) is the clinical endpoint of coronary heart disease and a leading cause of heart failure. Despite growing demands to develop personalized approaches to treat ICM, progress is limited by inadequate knowledge of its pathogenesis. Since epigenetics has been implicated in the development of other chronic diseases, the current study was designed to determine whether transcriptional and/or epigenetic changes are sufficient to distinguish ICM from other etiologies of heart failure. Specifically, we hypothesize that genome-wide DNA methylation encodes transcriptional reprogramming in ICM. RNA-sequencing analysis was performed on human ischemic left ventricular tissue obtained from patients with end-stage heart failure, which enriched known targets of the polycomb methyltransferase EZH2 compared to non-ischemic hearts. Combined RNA sequencing and genome-wide DNA methylation analysis revealed a robust gene expression pattern consistent with suppression of oxidative metabolism, induced anaerobic glycolysis, and altered cellular remodeling. Lastly, KLF15 was identified as a putative upstream regulator of metabolic gene expression that was itself regulated by EZH2 in a SET domain-dependent manner. Our observations therefore define a novel role of DNA methylation in the metabolic reprogramming of ICM. Furthermore, we identify EZH2 as an epigenetic regulator of KLF15 along with DNA hypermethylation, and we propose a novel mechanism through which coronary heart disease reprograms the expression of both intermediate enzymes and upstream regulators of cardiac metabolism such as KLF15.


Assuntos
Metilação de DNA , Insuficiência Cardíaca/genética , Isquemia Miocárdica/genética , Idoso , Animais , Linhagem Celular , Ilhas de CpG , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Genoma Humano , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de RNA
19.
Am J Physiol Heart Circ Physiol ; 316(5): H1014-H1026, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575437

RESUMO

The endoplasmic reticulum/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry, is expressed in cardiomyocytes and has been implicated in regulating multiple cardiac processes, including hypertrophic signaling. Interestingly, cardiomyocyte-restricted deletion of STIM1 (crSTIM1-KO) results in age-dependent endoplasmic reticulum stress, altered mitochondrial morphology, and dilated cardiomyopathy in mice. Here, we tested the hypothesis that STIM1 deficiency may also impact cardiac metabolism. Hearts isolated from 20-wk-old crSTIM1-KO mice exhibited a significant reduction in both oxidative and nonoxidative glucose utilization. Consistent with the reduction in glucose utilization, expression of glucose transporter 4 and AMP-activated protein kinase phosphorylation were all reduced, whereas pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphorylation were increased, in crSTIM1-KO hearts. Despite similar rates of fatty acid oxidation in control and crSTIM1-KO hearts ex vivo, crSTIM1-KO hearts contained increased lipid/triglyceride content as well as increased fatty acid-binding protein 4, fatty acid synthase, acyl-CoA thioesterase 1, hormone-sensitive lipase, and adipose triglyceride lipase expression compared with control hearts, suggestive of a possible imbalance between fatty acid uptake and oxidation. Insulin-mediated alterations in AKT phosphorylation were observed in crSTIM1-KO hearts, consistent with cardiac insulin resistance. Interestingly, we observed abnormal mitochondria and increased lipid accumulation in 12-wk crSTIM1-KO hearts, suggesting that these changes may initiate the subsequent metabolic dysfunction. These results demonstrate, for the first time, that cardiomyocyte STIM1 may play a key role in regulating cardiac metabolism. NEW & NOTEWORTHY Little is known of the physiological role of stromal interaction molecule 1 (STIM1) in the heart. Here, we demonstrate, for the first time, that hearts lacking cardiomyocyte STIM1 exhibit dysregulation of both cardiac glucose and lipid metabolism. Consequently, these results suggest a potentially novel role for STIM1 in regulating cardiac metabolism.


Assuntos
Metabolismo Energético , Glucose/metabolismo , Metabolismo dos Lipídeos , Miócitos Cardíacos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácido Graxo Sintase Tipo I/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Feminino , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos Knockout , Oxirredução , Fosforilação , Proteínas Quinases/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Esterol Esterase/metabolismo , Molécula 1 de Interação Estromal/deficiência , Molécula 1 de Interação Estromal/genética , Tioléster Hidrolases/metabolismo
20.
Cardiovasc Pathol ; 37: 26-29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30223140

RESUMO

A 73-year-old woman with a past medical history of hypertension suffered a cardiac arrest. After successful resuscitation, she was hypotensive and tachycardic and the ECG showed ST elevation in the inferior and lateral precordial leads. Coronary angiography did not show evidence of obstructive coronary artery disease. A bedside echocardiogram demonstrated a large pericardial effusion with signs of cardiac tamponade. The echocardiogram and subsequent aortic root angiography did not reveal evidence of dissection. Pericardiocentesis removed 700 cc of bloody fluid with relief of tamponade. A few minutes later the patient again arrested. Fluid was again drained but she suffered recurrent hemodynamic collapse and could not be resuscitated. Autopsy revealed a small transmural myocardial infarction with external rupture and hemopericardium. There was only mild coronary artery disease without evidence of plaque rupture. This case illustrates that mild coronary artery disease and a small myocardial infarction can lead to catastrophic mechanical complications.


Assuntos
Ruptura Cardíaca Pós-Infarto/etiologia , Miocárdio/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Idoso , Tamponamento Cardíaco/etiologia , Angiografia Coronária , Ecocardiografia , Eletrocardiografia , Evolução Fatal , Feminino , Ruptura Cardíaca Pós-Infarto/patologia , Ruptura Cardíaca Pós-Infarto/terapia , Humanos , Derrame Pericárdico/etiologia , Pericardiocentese , Recidiva , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA