Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 110(6): 1091-1099, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38626749

RESUMO

Plasmodium parasites replicate asexually in human hosts. The proportion of infections that carries gametocytes is a proxy for human-to-mosquito transmissibility. It is unclear which proportion of Plasmodium vivax infections in Duffy-negative populations carries gametocytes. We determined the prevalence and characteristics of P. vivax gametocytes in Duffy-positive and -negative populations across broad regions of Ethiopia. Finger-prick blood samples were collected for microscopic and molecular screening of Plasmodium parasites and Duffy status of individuals. Molecular screening of Plasmodium species and Duffy blood group genotyping was done using SYBR green and the Taqman quantitative polymerase chain reaction method. Of the 447 febrile patients who were shown to be P. vivax smear positive, 414 (92.6%) were confirmed by molecular screening as P. vivax and 16 (3.9%) of them were from Duffy-negative individuals. Of these, 5 of 16 (31.3%) Duffy-negative P. vivax-infected samples were detected with gametocytes. Of the 398 Duffy-positive P. vivax-infected samples, 150 (37.7%) were detected with gametocytes, slightly greater than that in Duffy-negative samples. This study highlights the presence of P. vivax gametocytes in Duffy-negative infections, suggestive of human-to-mosquito transmissibility. Although P. vivax infections in Duffy-negative individuals were commonly associated with low parasitemia, some of these infections were shown to have relatively high parasitemia and may represent a prominent erythrocyte invasion capability of P. vivax, and hidden reservoirs that can contribute to transmission. A better understanding of P. vivax transmission biology and gametocyte function particularly in Duffy-negative populations would aid future treatment and management of P. vivax malaria in Africa.


Assuntos
Sistema do Grupo Sanguíneo Duffy , Malária Vivax , Plasmodium vivax , Humanos , Etiópia/epidemiologia , Plasmodium vivax/genética , Sistema do Grupo Sanguíneo Duffy/genética , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Malária Vivax/transmissão , Malária Vivax/sangue , Masculino , Adulto , Adolescente , Feminino , Prevalência , Adulto Jovem , Criança , Pessoa de Meia-Idade , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Pré-Escolar , Genótipo , Estudos Transversais
2.
medRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168152

RESUMO

Plasmodium parasites replicate asexually in the human host. The proportion of infections that carries gametocytes is a proxy for human-to-mosquito transmissibility. It is unclear what proportion of P. vivax infections in Duffy-negatives carries gametocytes. This study aims to determine the prevalence of P. vivax in Duffy-negatives across broad regions of Ethiopia and characterize parasite stages. Finger-prick blood samples were collected for microscopic and molecular screening of Plasmodium parasites and Duffy status of individuals. Molecular screening of plasmodium species and Duffy blood group genotyping was done using SYBR green and Taqman qPCR method. Among the total 447 samples, 414 (92.6%) were P. vivax confirmed and, 16 (3.9%) of them were from Duffy-negatives. Of these, 5/16 (31.3%) Duffy-negative P. vivax-infected samples were detected with gametocytes. Of the 398 Duffy-positive P. vivax-infected samples, 150 (37.7%) were detected with gametocytes, slightly higher than that in Duffy-negatives. This study highlights the presence of P. vivax gametocytes in Duffy-negative infections, suggestive of human-to-mosquito transmissibility. Although P. vivax infections in Duffy-negatives are commonly associated with low parasitemia, some of these infections were shown with relatively high parasitemia and may represent better erythrocyte invasion capability of P. vivax and hidden reservoirs that can contribute to transmission. A better understanding of P. vivax transmission biology and gametocyte function particularly in Duffy-negative populations would aid future treatment and management of vivax malaria in Africa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA