Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Drug Alcohol Rev ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412189

RESUMO

INTRODUCTION: A minimum unit price (MUP) for alcohol of £0.50 per unit (1 UK unit = 10 mL/8 g alcohol) was introduced in Scotland in May 2018. Few previous studies have examined the impact of alcohol pricing policies on people who are alcohol dependent. This study aimed to evaluate the effect of MUP on people who are alcohol dependent including changes in alcohol consumption and health status, as well as potential unintended consequences. METHODS: Three waves of cross-sectional data were collected in Scotland (intervention) and Northern England (control) at 0-6 months pre-implementation then 3-9 months and 18-22 months post-implementation. The sample was N = 706 people receiving treatment related to their alcohol use. We collected structured interview data including recent drinking information via a 7-day timeline-follow-back drinking diary. Difference-in-difference analyses estimated change in indicators in Scotland compared to England at both post-implementation timepoints. RESULTS: The proportion of participants consuming alcohol costing on average <£0.50 per unit in Scotland decreased from 60.6% at 0-6 months prior to MUP implementation to 6.3% at 3-9 months post-implementation (p < 0.0004). There was no significant change in the indicators for alcohol consumption, severity of dependence, health status, other substance use, deprivation level or parenting. DISCUSSION AND CONCLUSIONS: The introduction of MUP in Scotland was associated with increases in the prices paid for alcohol by people with dependence and presenting to treatment services. There was no evidence of changes in their alcohol consumption or health status. There was also no evidence of harmful unintended consequences for this population.

2.
Brain ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39432676

RESUMO

Neuropsychiatric symptoms are common and disabling in Parkinson's disease (PD), with troublesome anxiety occurring in one-third of patients. Management of anxiety in PD is challenging, hampered by insufficient insight into underlying mechanisms, lack of objective anxiety measurements, and largely ineffective treatments. In this study, we assessed the intracranial neurophysiological correlates of anxiety in PD patients treated with deep brain stimulation (DBS) in the laboratory and at home. We hypothesized that low-frequency (theta-alpha) activity would be associated with anxiety. We recorded local field potentials (LFP) from the subthalamic nucleus (STN) or the globus pallidus pars interna (GPi) DBS implants in three PD cohorts: 1) patients with recordings (STN) performed in hospital at rest via perioperatively externalized leads, without active stimulation, both ON or OFF dopaminergic medication; 2) patients with recordings (STN or GPi) performed at home while resting, via a chronically implanted commercially available sensing-enabled neurostimulator (Medtronic PerceptTM device), ON dopaminergic medication, with stimulation both on or off; 3) patients with recordings performed at home while engaging in a behavioral task via STN and GPi leads and electrocorticography paddles over premotor cortex connected to an investigational sensing-enabled neurostimulator, ON dopaminergic medication, with stimulation both on or off. Trait anxiety was measured with validated clinical scales in all participants, and state anxiety was measured with momentary assessment scales at multiple time points in the two at-home cohorts. Power in theta (4-8 Hz) and alpha (8-12 Hz) ranges were extracted from the LFP recordings, and their relation with anxiety ratings was assessed using linear mixed-effects models. In total, 33 PD patients (59 hemispheres) were included. Across three independent cohorts, with stimulation off, basal ganglia theta power was positively related to trait anxiety (all p<0.05). Also in a naturalistic setting, with individuals at home at rest with stimulation and medication ON, basal ganglia theta power was positively related to trait anxiety (p<0.05). This relationship held regardless of the hemisphere and DBS target. There was no correlation between trait anxiety and premotor cortical theta-alpha power. There was no within-patient association between basal ganglia theta-alpha power and state anxiety. We showed that basal ganglia theta activity indexes trait anxiety in PD. Our data suggest that theta could be a possible physiomarker of neuropsychiatric symptoms and specifically of anxiety in PD, potentially suitable for guiding advanced DBS treatment tailored to the individual patient's needs, including non-motor symptoms.

3.
NPJ Parkinsons Dis ; 10(1): 174, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289373

RESUMO

Adaptive deep brain stimulation (aDBS) is an emerging advancement in DBS technology; however, local field potential (LFP) signal rate detection sufficient for aDBS algorithms and the methods to set-up aDBS have yet to be defined. Here we summarize sensing data and aDBS programming steps associated with the ongoing Adaptive DBS Algorithm for Personalized Therapy in Parkinson's Disease (ADAPT-PD) pivotal trial (NCT04547712). Sixty-eight patients were enrolled with either subthalamic nucleus or globus pallidus internus DBS leads connected to a Medtronic PerceptTM PC neurostimulator. During the enrollment and screening procedures, a LFP (8-30 Hz, ≥1.2 µVp) control signal was identified by clinicians in 84.8% of patients on medication (65% bilateral signal), and in 92% of patients off medication (78% bilateral signal). The ADAPT-PD trial sensing data indicate a high LFP signal presence in both on and off medication states of these patients, with bilateral signal in the majority, regardless of PD phenotype.

4.
Nat Med ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160351

RESUMO

Deep brain stimulation (DBS) is a widely used therapy for Parkinson's disease (PD) but lacks dynamic responsiveness to changing clinical and neural states. Feedback control might improve therapeutic effectiveness, but the optimal control strategy and additional benefits of 'adaptive' neurostimulation are unclear. Here we present the results of a blinded randomized cross-over pilot trial aimed at determining the neural correlates of specific motor signs in individuals with PD and the feasibility of using these signals to drive adaptive DBS. Four male patients with PD were recruited from a population undergoing DBS implantation for motor fluctuations, with each patient receiving adaptive DBS and continuous DBS. We identified stimulation-entrained gamma oscillations in the subthalamic nucleus or motor cortex as optimal markers of high versus low dopaminergic states and their associated residual motor signs in all four patients. We then demonstrated improved motor symptoms and quality of life with adaptive compared to clinically optimized standard stimulation. The results of this pilot trial highlight the promise of personalized adaptive neurostimulation in PD based on data-driven selection of neural signals. Furthermore, these findings provide the foundation for further larger clinical trials to evaluate the efficacy of personalized adaptive neurostimulation in PD and other neurological disorders. ClinicalTrials.gov registration: NCT03582891 .

5.
Proc Natl Acad Sci U S A ; 121(31): e2322869121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047043

RESUMO

Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we report an exploratory investigation into this with chronic intracranial recordings from the prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12 to 20 Hz) oscillations tracking effort on a single-trial basis and PFC theta (4 to 7 Hz) signaling previous trial reward, with no effects of net subjective value. Stimulation of PFC increased overall acceptance of offers and sensitivity to reward while decreasing the impact of effort on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, supports a causal role of PFC for such choices, and seeds hypotheses for future studies.


Assuntos
Gânglios da Base , Tomada de Decisões , Doença de Parkinson , Córtex Pré-Frontal , Recompensa , Ritmo Teta , Humanos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Tomada de Decisões/fisiologia , Gânglios da Base/fisiologia , Gânglios da Base/fisiopatologia , Masculino , Ritmo Teta/fisiologia , Feminino , Doença de Parkinson/fisiopatologia , Pessoa de Meia-Idade , Ritmo beta/fisiologia , Idoso
6.
medRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38854092

RESUMO

Objectives: Participation is essential to DBS research, yet circumstances that affect diverse participation remain unclear. Here we evaluate factors impacting participation in an adaptive DBS study of Parkinson's disease (PD) and dystonia. Methods: Twenty participants were implanted with a sensing-enabled DBS device (Medtronic Summit RC+S) that allows neural data streaming in naturalistic settings and encouraged to stream as much as possible for the first five months after surgery. Using standardized baseline data obtained through neuropsychological evaluation, we compared neuropsychological and social variables to streaming hours. Results: Marital status and irritability significantly impacted streaming hours (estimate=136.7, bootstrapped ( b ) CI b =45.0 to 249.0, p b =0.016, and estimate=-95.1, CI b =-159.9 to -49.2, p b =0.027, respectively). These variables remained significant after multivariable analysis. Composite scores on verbal memory evaluations predicted the number of hours of data streamed (R 2 =0.284, estimate=67.7, CI b =20.1 to 119.9, p b =0.019). Discussion: Verbal memory impairment, irritability, and lack of a caregiver may be associated with decreased participation. Further study of factors that impact research participation is critical to the sustained inclusion of diverse participants.

7.
medRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883720

RESUMO

Background: Neuropsychiatric symptoms are common and disabling in Parkinson's disease (PD), with troublesome anxiety occurring in one-third of patients. Management of anxiety in PD is challenging, hampered by insufficient insight into underlying mechanisms, lack of objective anxiety measurements, and largely ineffective treatments.In this study, we assessed the intracranial neurophysiological correlates of anxiety in PD patients treated with deep brain stimulation (DBS) in the laboratory and at home. We hypothesized that low-frequency (theta-alpha) activity would be associated with anxiety. Methods: We recorded local field potentials (LFP) from the subthalamic nucleus (STN) or the globus pallidus pars interna (GPi) DBS implants in three PD cohorts: 1) patients with recordings (STN) performed in hospital at rest via perioperatively externalized leads, without active stimulation, both ON or OFF dopaminergic medication; 2) patients with recordings (STN or GPi) performed at home while resting, via a chronically implanted commercially available sensing-enabled neurostimulator (Medtronic Percept™ device), ON dopaminergic medication, with stimulation both ON or OFF; 3) patients with recordings performed at home while engaging in a behavioral task via STN and GPi leads and electrocorticography paddles (ECoG) over premotor cortex connected to an investigational sensing-enabled neurostimulator, ON dopaminergic medication, with stimulation both ON or OFF.Trait anxiety was measured with validated clinical scales in all participants, and state anxiety was measured with momentary assessment scales at multiple time points in the two at-home cohorts. Power in theta (4-8 Hz) and alpha (8-12 Hz) ranges were extracted from the LFP recordings, and their relation with anxiety ratings was assessed using linear mixed-effects models. Results: In total, 33 PD patients (59 hemispheres) were included. Across three independent cohorts, with stimulation OFF, basal ganglia theta power was positively related to trait anxiety (all p<0.05). Also in a naturalistic setting, with individuals at home at rest with stimulation and medication ON, basal ganglia theta power was positively related to trait anxiety (p<0.05). This relationship held regardless of the hemisphere and DBS target. There was no correlation between trait anxiety and premotor cortical theta-alpha power. There was no within-patient association between basal ganglia theta-alpha power and state anxiety. Conclusion: We showed that basal ganglia theta activity indexes trait anxiety in PD. Our data suggest that theta could be a possible physiomarker of neuropsychiatric symptoms and specifically of anxiety in PD, potentially suitable for guiding advanced DBS treatment tailored to the individual patient's needs, including non-motor symptoms.

8.
NPJ Parkinsons Dis ; 10(1): 122, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918385

RESUMO

Quantification of motor symptom progression in Parkinson's disease (PD) patients is crucial for assessing disease progression and for optimizing therapeutic interventions, such as dopaminergic medications and deep brain stimulation. Cumulative and heuristic clinical experience has identified various clinical signs associated with PD severity, but these are neither objectively quantifiable nor robustly validated. Video-based objective symptom quantification enabled by machine learning (ML) introduces a potential solution. However, video-based diagnostic tools often have implementation challenges due to expensive and inaccessible technology, and typical "black-box" ML implementations are not tailored to be clinically interpretable. Here, we address these needs by releasing a comprehensive kinematic dataset and developing an interpretable video-based framework that predicts high versus low PD motor symptom severity according to MDS-UPDRS Part III metrics. This data driven approach validated and robustly quantified canonical movement features and identified new clinical insights, not previously appreciated as related to clinical severity, including pinkie finger movements and lower limb and axial features of gait. Our framework is enabled by retrospective, single-view, seconds-long videos recorded on consumer-grade devices such as smartphones, tablets, and digital cameras, thereby eliminating the requirement for specialized equipment. Following interpretable ML principles, our framework enforces robustness and interpretability by integrating (1) automatic, data-driven kinematic metric evaluation guided by pre-defined digital features of movement, (2) combination of bi-domain (body and hand) kinematic features, and (3) sparsity-inducing and stability-driven ML analysis with simple-to-interpret models. These elements ensure that the proposed framework quantifies clinically meaningful motor features useful for both ML predictions and clinical analysis.

9.
Nat Commun ; 15(1): 4602, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816390

RESUMO

Circadian rhythms have been shown in the subthalamic nucleus (STN) in Parkinson's disease (PD), but only a few studies have focused on the globus pallidus internus (GPi). This retrospective study investigates GPi circadian rhythms in a large cohort of subjects with PD (130 recordings from 93 subjects) with GPi activity chronically recorded in their home environment. We found a significant change in GPi activity between daytime and nighttime in most subjects (82.4%), with a reduction in GPi activity at nighttime in 56.2% of recordings and an increase in activity in 26.2%. GPi activity in higher frequency bands ( > 20 Hz) was more likely to decrease at night and in patients taking extended-release levodopa medication. Our results suggest that circadian fluctuations in the GPi vary across individuals and that increased power at night might be due to the reemergence of pathological neural activity. These findings should be considered to ensure successful implementation of adaptive neurostimulation paradigms in the real-world.


Assuntos
Ritmo Circadiano , Estimulação Encefálica Profunda , Globo Pálido , Levodopa , Doença de Parkinson , Humanos , Globo Pálido/fisiopatologia , Doença de Parkinson/fisiopatologia , Ritmo Circadiano/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Levodopa/uso terapêutico , Núcleo Subtalâmico/fisiopatologia
10.
NPJ Digit Med ; 7(1): 122, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729977

RESUMO

Sleep disturbances profoundly affect the quality of life in individuals with neurological disorders. Closed-loop deep brain stimulation (DBS) holds promise for alleviating sleep symptoms, however, this technique necessitates automated sleep stage decoding from intracranial signals. We leveraged overnight data from 121 patients with movement disorders (Parkinson's disease, Essential Tremor, Dystonia, Essential Tremor, Huntington's disease, and Tourette's syndrome) in whom synchronized polysomnograms and basal ganglia local field potentials were recorded, to develop a generalized, multi-class, sleep specific decoder - BGOOSE. This generalized model achieved 85% average accuracy across patients and across disease conditions, even in the presence of recordings from different basal ganglia targets. Furthermore, we also investigated the role of electrocorticography on decoding performances and proposed an optimal decoding map, which was shown to facilitate channel selection for optimal model performances. BGOOSE emerges as a powerful tool for generalized sleep decoding, offering exciting potentials for the precision stimulation delivery of DBS and better management of sleep disturbances in movement disorders.

11.
J Neurol ; 271(7): 3764-3776, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38809271

RESUMO

BACKGROUND: Autonomic dysfunction is common and disabling in Parkinson's disease (PD). The effects of deep brain stimulation (DBS) on the cardiovascular system in PD remain poorly understood. We aimed to assess the effect of DBS on cardiovascular symptoms and objective measures in PD patients. METHODS: We conducted a systematic literature search in PubMed/MEDLINE. RESULTS: 36 out of 472 studies were included, mostly involving DBS of the subthalamic nucleus, and to a lesser extent the globus pallidus pars interna and pedunculopontine nucleus. Seventeen studies evaluated the effect of DBS on patient-reported or clinician-rated cardiovascular symptoms, showing an improvement in the first year after surgery but not with longer-term follow-up. DBS has no clear direct effects on blood pressure during an orthostatic challenge (n = 10 studies). DBS has inconsistent effects on heart rate variability (n = 10 studies). CONCLUSION: Current evidence on the impact of DBS on cardiovascular functions in PD is inconclusive. DBS may offer short-term improvement of cardiovascular symptoms in PD, particularly orthostatic hypotension, which may be attributed to dopaminergic medication reduction after surgery. There is insufficient evidence to draw conclusions on the direct effect of DBS on blood pressure and heart rate variability.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia
12.
Front Hum Neurosci ; 18: 1320806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450221

RESUMO

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

13.
Nat Commun ; 15(1): 1793, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413587

RESUMO

Sleep disturbance is a prevalent and disabling comorbidity in Parkinson's disease (PD). We performed multi-night (n = 57) at-home intracranial recordings from electrocorticography and subcortical electrodes using sensing-enabled Deep Brain Stimulation (DBS), paired with portable polysomnography in four PD participants and one with cervical dystonia (clinical trial: NCT03582891). Cortico-basal activity in delta increased and in beta decreased during NREM (N2 + N3) versus wakefulness in PD. DBS caused further elevation in cortical delta and decrease in alpha and low-beta compared to DBS OFF state. Our primary outcome demonstrated an inverse interaction between subcortical beta and cortical slow-wave during NREM. Our secondary outcome revealed subcortical beta increases prior to spontaneous awakenings in PD. We classified NREM vs. wakefulness with high accuracy in both traditional (30 s: 92.6 ± 1.7%) and rapid (5 s: 88.3 ± 2.1%) data epochs of intracranial signals. Our findings elucidate sleep neurophysiology and impacts of DBS on sleep in PD informing adaptive DBS for sleep dysfunction.


Assuntos
Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Sono/fisiologia , Polissonografia , Eletrocorticografia
14.
Brain ; 147(6): 2038-2052, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38195196

RESUMO

In Parkinson's disease, imbalances between 'antikinetic' and 'prokinetic' patterns of neuronal oscillatory activity are related to motor dysfunction. Invasive brain recordings from the motor network have suggested that medical or surgical therapy can promote a prokinetic state by inducing narrowband gamma rhythms (65-90 Hz). Excessive narrowband gamma in the motor cortex promotes dyskinesia in rodent models, but the relationship between narrowband gamma and dyskinesia in humans has not been well established. To assess this relationship, we used a sensing-enabled deep brain stimulator system, attached to both motor cortex and basal ganglia (subthalamic or pallidal) leads, paired with wearable devices that continuously tracked motor signs in the contralateral upper limbs. We recorded 984 h of multisite field potentials in 30 hemispheres of 16 subjects with Parkinson's disease (2/16 female, mean age 57 ± 12 years) while at home on usual antiparkinsonian medications. Recordings were done 2-4 weeks after implantation, prior to starting therapeutic stimulation. Narrowband gamma was detected in the precentral gyrus, subthalamic nucleus or both structures on at least one side of 92% of subjects with a clinical history of dyskinesia. Narrowband gamma was not detected in the globus pallidus. Narrowband gamma spectral power in both structures co-fluctuated similarly with contralateral wearable dyskinesia scores (mean correlation coefficient of ρ = 0.48 with a range of 0.12-0.82 for cortex, ρ = 0.53 with a range of 0.5-0.77 for subthalamic nucleus). Stratification analysis showed the correlations were not driven by outlier values, and narrowband gamma could distinguish 'on' periods with dyskinesia from 'on' periods without dyskinesia. Time lag comparisons confirmed that gamma oscillations herald dyskinesia onset without a time lag in either structure when using 2-min epochs. A linear model incorporating the three oscillatory bands (beta, theta/alpha and narrowband gamma) increased the predictive power of dyskinesia for several subject hemispheres. We further identified spectrally distinct oscillations in the low gamma range (40-60 Hz) in three subjects, but the relationship of low gamma oscillations to dyskinesia was variable. Our findings support the hypothesis that excessive oscillatory activity at 65-90 Hz in the motor network tracks with dyskinesia similarly across both structures, without a detectable time lag. This rhythm may serve as a promising control signal for closed-loop deep brain stimulation using either cortical or subthalamic detection.


Assuntos
Estimulação Encefálica Profunda , Ritmo Gama , Córtex Motor , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Feminino , Masculino , Pessoa de Meia-Idade , Ritmo Gama/fisiologia , Estimulação Encefálica Profunda/métodos , Córtex Motor/fisiopatologia , Idoso , Adulto , Discinesias/fisiopatologia , Discinesias/etiologia , Núcleo Subtalâmico/fisiopatologia , Rede Nervosa/fisiopatologia
15.
Parkinsonism Relat Disord ; 121: 106010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38245382

RESUMO

Neurofeedback (NF) techniques support individuals to self-regulate specific features of brain activity, which has been shown to impact behavior and potentially ameliorate clinical symptoms. Electrophysiological NF (epNF) may be particularly impactful for patients with Parkinson's disease (PD), as evidence mounts to suggest a central role of pathological neural oscillations underlying symptoms in PD. Exaggerated beta oscillations (12-30 Hz) in the basal ganglia-cortical network are linked to motor symptoms (e.g., bradykinesia, rigidity), and beta is reduced by successful therapy with dopaminergic medication and Deep Brain Stimulation (DBS). PD patients also experience non-motor symptoms related to sleep, mood, motivation, and cognitive control. Although less is known about the mechanisms of non-motor symptoms in PD and how to successfully treat them, low frequency neural oscillations (1-12 Hz) in the basal ganglia-cortical network are particularly implicated in non-motor symptoms. Here, we review how cortical and subcortical epNF could be used to target motor and non-motor specific oscillations, and potentially serve as an adjunct therapy that enables PD patients to endogenously control their own pathological neural activities. Recent studies have demonstrated that epNF protocols can successfully support volitional control of cortical and subcortical beta rhythms. Importantly, this endogenous control of beta has been linked to changes in motor behavior. epNF for PD, as a casual intervention on neural signals, has the potential to increase understanding of the neurophysiology of movement, mood, and cognition and to identify new therapeutic approaches for motor and non-motor symptoms.


Assuntos
Estimulação Encefálica Profunda , Neurorretroalimentação , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Gânglios da Base/patologia , Movimento , Ritmo beta/fisiologia , Estimulação Encefálica Profunda/métodos
16.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106063

RESUMO

Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we investigate this with chronic intracranial recordings from prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12-20 Hz) oscillations tracking subjective effort on a single trial basis and PFC theta (4-7 Hz) signaling previous trial reward. Stimulation of PFC increased overall acceptance of offers in addition to increasing the impact of reward on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, as well as supporting a causal role of PFC for such choices.

17.
Res Sq ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986864

RESUMO

Background: Sleep disturbance is a prevalent and highly disabling comorbidity in individuals with Parkinson's disease (PD) that leads to worsening of daytime symptoms, reduced quality of life and accelerated disease progression. Objectives: We aimed to record naturalistic overnight cortico-basal neural activity in people with PD, in order to determine the neurophysiology of spontaneous awakenings and slow wave suppression in non-rapid eye movement (NREM) sleep, towards the development of novel sleep-targeted neurostimulation therapies. Methods: Multi-night (n=58) intracranial recordings were performed at-home, from chronic electrocorticography and subcortical electrodes, with sensing-enabled Deep Brain Stimulation (DBS), paired with portable polysomnography. Four participants with PD and one participant with cervical dystonia were evaluated to determine the neural structures, signals and functional connectivity modulated during NREM sleep and prior to spontaneous awakenings. Intracranial recordings were performed both ON and OFF DBS to evaluate the impact of stimulation. Sleep staging was then classified with machine-learning models using intracranial cortico-basal signals on classical (30 s) and rapid (5 s) timescales. Results: We demonstrate an increase in cortico-basal slow wave delta (1-4 Hz) activity and a decrease in beta (13-31 Hz) activity during NREM (N2 and N3) versus wakefulness in PD. Cortical-basal ganglia coherence was also found to be higher in the delta range and lower in the beta range during NREM. DBS stimulation resulted in a further elevation in cortical delta and a decrease in alpha (8-13 Hz) and low beta (13-15 Hz) power compared to the OFF stimulation state. Within NREM sleep, we observed a strong inverse interaction between subcortical beta and cortical slow wave activity and found that subcortical beta increases prior to spontaneous awakenings at high-temporal resolution (5s). Our machine-learning models trained on intracranial cortical or subcortical power features achieved high accuracy in both traditional (30s) and rapid (5s) time windows for NREM vs. wakefulness classification (30s: 92.6±1.7%; 5s: 88.3±2.1%). Conclusions: Chronic, multi-night recordings in PD reveal increased cortico-basal slow wave, decreased beta activity, and changes in functional connectivity in NREM vs wakefulness, effects that are enhanced in the presence of DBS. Within NREM, subcortical beta and cortical delta are strongly inversely correlated and subcortical beta power increases prior to spontaneous awakenings. Our findings elucidate the network-level neurophysiology of sleep dysfunction in PD and the mechanistic impact of conventional DBS. Additionally, through accurate machine-learning classification of spontaneous awakenings, this study also provides a foundation for future personalized adaptive DBS therapies for sleep dysfunction in PD.

18.
NPJ Parkinsons Dis ; 9(1): 136, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735477

RESUMO

Neuropsychiatric mood and motivation symptoms (depression, anxiety, apathy, impulse control disorders) in Parkinson's disease (PD) are highly disabling, difficult to treat and exacerbated by current medications and deep brain stimulation therapies. High-resolution intracranial recording techniques have the potential to undercover the network dysfunction and cognitive processes that drive these symptoms, towards a principled re-tuning of circuits. We highlight intracranial recording as a valuable tool for mapping and desegregating neural networks and their contribution to mood, motivation and behavioral symptoms, via the ability to dissect multiplexed overlapping spatial and temporal neural components. This technique can be powerfully combined with behavioral paradigms and emerging computational techniques to model underlying latent behavioral states. We review the literature of intracranial recording studies investigating mood, motivation and behavioral symptomatology with reference to 1) emotional processing, 2) executive control 3) subjective valuation (reward & cost evaluation) 4) motor control and 5) learning and updating. This reveals associations between different frequency specific network activities and underlying cognitive processes of reward decision making and action control. If validated, these signals represent potential computational biomarkers of motivational and behavioural states and could lead to principled therapy development for mood, motivation and behavioral symptoms in PD.

19.
Brain Stimul ; 16(5): 1412-1424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37683763

RESUMO

OBJECTIVES: The exact mechanisms of deep brain stimulation (DBS) are still an active area of investigation, in spite of its clinical successes. This is due in part to the lack of understanding of the effects of stimulation on neuronal rhythms. Entrainment of brain oscillations has been hypothesised as a potential mechanism of neuromodulation. A better understanding of entrainment might further inform existing methods of continuous DBS, and help refine algorithms for adaptive methods. The purpose of this study is to develop and test a theoretical framework to predict entrainment of cortical rhythms to DBS across a wide range of stimulation parameters. MATERIALS AND METHODS: We fit a model of interacting neural populations to selected features characterising PD patients' off-stimulation finely-tuned gamma rhythm recorded through electrocorticography. Using the fitted models, we predict basal ganglia DBS parameters that would result in 1:2 entrainment, a special case of sub-harmonic entrainment observed in patients and predicted by theory. RESULTS: We show that the neural circuit models fitted to patient data exhibit 1:2 entrainment when stimulation is provided across a range of stimulation parameters. Furthermore, we verify key features of the region of 1:2 entrainment in the stimulation frequency/amplitude space with follow-up recordings from the same patients, such as the loss of 1:2 entrainment above certain stimulation amplitudes. CONCLUSION: Our results reveal that continuous, constant frequency DBS in patients may lead to nonlinear patterns of neuronal entrainment across stimulation parameters, and that these responses can be predicted by modelling. Should entrainment prove to be an important mechanism of therapeutic stimulation, our modelling framework may reduce the parameter space that clinicians must consider when programming devices for optimal benefit.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Gânglios da Base , Modalidades de Fisioterapia , Eletrocorticografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA