Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571794

RESUMO

Comparative anatomy is an important tool for investigating evolutionary relationships among species, but the lack of scalable imaging tools and stains for rapidly mapping the microscale anatomies of related species poses a major impediment to using comparative anatomy approaches for identifying evolutionary adaptations. We describe a method using synchrotron source micro-x-ray computed tomography (syn-µXCT) combined with machine learning algorithms for high-throughput imaging of Lepidoptera (i.e., butterfly and moth) eyes. Our pipeline allows for imaging at rates of ~15 min/mm3 at 600 nm3 resolution. Image contrast is generated using standard electron microscopy labeling approaches (e.g., osmium tetroxide) that unbiasedly labels all cellular membranes in a species-independent manner thus removing any barrier to imaging any species of interest. To demonstrate the power of the method, we analyzed the 3D morphologies of butterfly crystalline cones, a part of the visual system associated with acuity and sensitivity and found significant variation within six butterfly individuals. Despite this variation, a classic measure of optimization, the ratio of interommatidial angle to resolving power of ommatidia, largely agrees with early work on eye geometry across species. We show that this method can successfully be used to determine compound eye organization and crystalline cone morphology. Our novel pipeline provides for fast, scalable visualization and analysis of eye anatomies that can be applied to any arthropod species, enabling new questions about evolutionary adaptations of compound eyes and beyond.

2.
Phys Rev E ; 109(2-1): 024220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491679

RESUMO

Complex dynamical systems may exhibit multiple steady states, including time-periodic limit cycles, where the final trajectory depends on initial conditions. With tuning of parameters, limit cycles can proliferate or merge at an exceptional point. Here we ask how dynamics in the vicinity of such a bifurcation are influenced by noise. A pitchfork bifurcation can be used to induce bifurcation behavior. We model a limit cycle with the normal form of the Hopf oscillator, couple it to the pitchfork, and investigate the resulting dynamical system in the presence of noise. We show that the generating functional for the averages of the dynamical variables factorizes between the pitchfork and the oscillator. The statistical properties of the pitchfork in the presence of noise in its various regimes are investigated and a scaling theory is developed for the correlation and response functions, including a possible symmetry-breaking field. The analysis is done by perturbative calculations as well as numerical means. Finally, observables illustrating the coupling of a system with a limit cycle to a pitchfork are discussed and the phase-phase correlations are shown to exhibit nondiffusive behavior with universal scaling.

3.
Nat Mater ; 22(3): 311-315, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36804639

RESUMO

Cubic energy materials such as thermoelectrics or hybrid perovskite materials are often understood to be highly disordered1,2. In GeTe and related IV-VI compounds, this is thought to provide the low thermal conductivities needed for thermoelectric applications1. Since conventional crystallography cannot distinguish between static disorder and atomic motions, we develop the energy-resolved variable-shutter pair distribution function technique. This collects structural snapshots with varying exposure times, on timescales relevant for atomic motions. In disagreement with previous interpretations3-5, we find the time-averaged structure of GeTe to be crystalline at all temperatures, but with anisotropic anharmonic dynamics at higher temperatures that resemble static disorder at fast shutter speeds, with correlated ferroelectric fluctuations along the <100>c direction. We show that this anisotropy naturally emerges from a Ginzburg-Landau model that couples polarization fluctuations through long-range elastic interactions6. By accessing time-dependent atomic correlations in energy materials, we resolve the long-standing disagreement between local and average structure probes1,7-9 and show that spontaneous anisotropy is ubiquitous in cubic IV-VI materials.

4.
Phys Rev Lett ; 129(13): 136401, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206416

RESUMO

In the context of a single-electron two orbital Holstein system coupled to dispersionless bosons, we develop a general method to correct the single-particle Green's function using a power series correction (PSC) scheme. We outline the derivations of various flavors of cumulant approximation through the PSC scheme explaining the assumptions and approximations behind them. Finally, we compare the PSC spectral function with cumulant and exact diagonalized spectral functions and elucidate three regimes of this problem-two where the cumulant explains and one where the cumulant fails. We find that the exact and the PSC spectral functions match within spectral broadening across all three regimes.

5.
Bioengineering (Basel) ; 9(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35447711

RESUMO

The COVID-19 pandemic has brought attention to the need for developing effective respiratory support that can be rapidly implemented during critical surge capacity scenarios in healthcare settings. Lung support with bubble continuous positive airway pressure (B-CPAP) is a well-established therapeutic approach for supporting neonatal patients. However, the effectiveness of B-CPAP in larger pediatric and adult patients has not been addressed. Using similar principles of B-CPAP pressure generation, application of intermittent positive pressure inflations above CPAP could support gas exchange and high work of breathing levels in larger patients experiencing more severe forms of respiratory failure. This report describes the design and performance characteristics of the BubbleVent, a novel 3D-printed valve system that combined with commonly found tubes, hoses, and connectors can provide intermittent mandatory ventilation (IMV) suitable for adult mechanical ventilation without direct electrification. Testing of the BubbleVent was performed on a passive adult test lung model and compared with a critical care ventilator commonly used in tertiary care centers. The BubbleVent was shown to deliver stable PIP and PEEP levels, as well as timing control of breath delivery that was comparable with a critical care ventilator.

6.
J Phys Condens Matter ; 34(9)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34818628

RESUMO

A detailed exploration of thef-atomic orbital occupancy space for UO2is performed using a first principles approach based on density functional theory (DFT), employing a full hybrid functional within a systematic basis set. Specifically, the PBE0 functional is combined with an occupancy biasing scheme implemented in a wavelet-based algorithm which is adapted to large supercells. The results are compared with previous DFT +Ucalculations reported in the literature, while dynamical mean field theory is also performed to provide a further base for comparison. This work shows that the computational complexity of the energy landscape of a correlatedf-electron oxide is much richer than has previously been demonstrated. The resulting calculations provide evidence of the existence of multiple previously unexplored metastable electronic states of UO2, including those with energies which are lower than previously reported ground states.

7.
Nano Lett ; 21(10): 4287-4291, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974440

RESUMO

Excellent photovoltaic performance is predicted in a pentagonal covalent network of Si in a hollow structure exhibiting both thermal and dynamical stability. Consisting of a combination of sp2 and sp3 hybridized Si atomic orbitals, the GW0 computed band structure shows an indirect band gap near the zone edge and also a manifold of directly absorbing transitions at frequencies in the window of visible light, in distinction with conventional Si. Hydrogenation of a single sp2 site is predicted to lead to a robust local magnetic moment. We find a low formation energy at low pressure that is compatible with other experimentally known phases, suggesting that a stable phase might be obtained.

8.
Nature ; 592(7854): 363-369, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854249

RESUMO

Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium systems7-9, networks of neurons10,11, social groups with conformist and contrarian members12, directional interface growth phenomena13-15 and metamaterials16-20. Although wave propagation in non-reciprocal media has recently been closely studied1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points21. We describe the emergence of these phases using insights from bifurcation theory22,23 and non-Hermitian quantum mechanics24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle.

9.
Cell ; 182(6): 1372-1376, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32946777

RESUMO

Large scientific projects in genomics and astronomy are influential not because they answer any single question but because they enable investigation of continuously arising new questions from the same data-rich sources. Advances in automated mapping of the brain's synaptic connections (connectomics) suggest that the complicated circuits underlying brain function are ripe for analysis. We discuss benefits of mapping a mouse brain at the level of synapses.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Camundongos
10.
Phys Rev Lett ; 122(18): 185301, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144881

RESUMO

We propose a novel mechanism for a nonequilibrium phase transition in a U(1)-broken phase of an electron-hole-photon system, from a Bose-Einstein condensate of polaritons to a photon laser, induced by the non-Hermitian nature of the condensate. We show that a (uniform) steady state of the condensate can always be classified into two types, namely, arising either from lower or upper-branch polaritons. We prove (for a general model) and demonstrate (for a particular model of polaritons) that an exceptional point where the two types coalesce marks the end point of a first-order-like phase boundary between the two types, similar to a critical point in a liquid-gas phase transition. Since the phase transition found in this paper is not in general triggered by population inversion, our result implies that the second threshold observed in experiments is not necessarily a strong-to-weak-coupling transition, contrary to the widely believed understanding. Although our calculation mainly aims to clarify polariton physics, our discussion is applicable to general driven-dissipative condensates composed of two complex fields.

11.
Sci Rep ; 6: 33220, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27622775

RESUMO

We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.

12.
13.
Phys Rev Lett ; 110(16): 166403, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679627

RESUMO

The elastic response of suspended NbSe(3) nanowires is studied across the charge density wave phase transition. The nanoscale dimensions of the resonator lead to a large resonant frequency (~10-100 MHz), bringing the excited phonon frequency in close proximity of the plasmon mode of the electronic condensate-a parameter window not accessible in bulk systems. The interaction between the phonon and plasmon modes strongly modifies the elastic properties at high frequencies. This is manifested in the nanomechanics of the system as a sharp peak in the temperature dependence of the elastic modulus (relative change of 12.8%) in the charge density wave phase.

14.
Phys Rev Lett ; 110(10): 106402, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521275

RESUMO

We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-principles calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the hemoglobin metalloprotein central to human respiration. We find that variations in Hund's exchange coupling induce a reduction of the iron 3d density, with a concomitant increase of valence fluctuations. We discuss the comparison between our computed optical absorption spectra and experimental data, our picture accounting for the observation of optical transitions in the infrared regime, and how the Hund's coupling reduces, by a factor of 5, the strong imbalance in the binding energies of heme with CO and O(2) ligands.


Assuntos
Heme/química , Hemoglobinas/química , Modelos Químicos , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Oxigênio/química , Oxigênio/metabolismo , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Termodinâmica
15.
Phys Rev Lett ; 108(25): 256402, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23004627

RESUMO

Vanadium dioxide undergoes a first order metal-insulator transition at 340 K. In this Letter, we develop and carry out state-of-the-art linear scaling density-functional theory calculations refined with nonlocal dynamical mean-field theory. We identify a complex mechanism, a Peierls-assisted orbital selection Mott instability, which is responsible for the insulating M(1) phase, and which furthermore survives a moderate degree of disorder.

16.
Proc Natl Acad Sci U S A ; 109(17): 6467-72, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22496595

RESUMO

We create a large exciton-polariton condensate and employ a Michelson interferometer setup to characterize the short- and long-distance behavior of the first order spatial correlation function. Our experimental results show distinct features of both the two-dimensional and nonequilibrium characters of the condensate. We find that the gaussian short-distance decay is followed by a power-law decay at longer distances, as expected for a two-dimensional condensate. The exponent of the power law is measured in the range 0.9-1.2, larger than is possible in equilibrium. We compare the experimental results to a theoretical model to understand the features required to observe a power law and to clarify the influence of external noise on spatial coherence in nonequilibrium phase transitions. Our results indicate that Berezinskii-Kosterlitz-Thouless-like phase order survives in open-dissipative systems.

17.
ACS Nano ; 6(5): 3841-52, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22489563

RESUMO

Local electrochemical phenomena on the surfaces of the LaAlO(3)-SrTiO(3) heterostructure are explored using unipolar and bipolar dynamic electrochemical strain microscopy (D-ESM). The D-ESM suggests the presence of at least two distinct electrochemical processes, including fast reversible low-voltage process and slow high-voltage process. The latter process is associated with static surface deformations in the sub-nanometer regime. These behaviors are compared with Kelvin probe force microscopy hysteresis data. The possible origins of observed phenomena are discussed, and these studies suggest that charge-writing behavior in LAO-STO includes a strong surface/bulk electrochemical component and is more complicated than simple screening by surface adsorbates.

18.
Phys Rev Lett ; 104(21): 216403, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20867122

RESUMO

CeCoIn5 is an anomalous superconductor which exhibits a high-magnetic-field phase that consists of a modulated magnetic coupling together with persistent superconducting order. Here we use a generic microscopic model to argue that this state is a pattern of coexisting condensates: a d-wave singlet superconducting (SC) state, a staggered π-triplet SC state, and a spin density wave (SDW). Our microscopic picture allows a calculation of the phase diagram, and physical consequences including NMR. We interpret the appearance of the SDW order in the Q phase as being induced by odd-triplet pairing.

19.
Phys Rev Lett ; 101(16): 166602, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18999697

RESUMO

The dielectric response in a magnetic field is routinely used to probe the existence of coupled magnetic and elastic order in the multiferroics. However, here we demonstrate that magnetism is not necessary to produce a magnetocapacitance when the material is inhomogeneous. By considering a two-dimensional, two-component composite medium, we find a characteristic dielectric resonance that depends on magnetic field. We propose this as a possible signature of inhomogeneities and we argue that this behavior has already been observed in nanoporous silicon and some manganites.

20.
Phys Rev Lett ; 100(21): 216401, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18518621

RESUMO

The superfluid to Mott insulator transition in cavity polariton arrays is analyzed using the variational cluster approach, taking into account quantum fluctuations exactly on finite length scales. Phase diagrams in one and two dimensions exhibit important non-mean-field features. Single-particle excitation spectra in the Mott phase are dominated by particle and hole bands separated by a Mott gap. In contrast to Bose-Hubbard models, detuning allows for changing the nature of the bosonic particles from quasilocalized excitons to polaritons to weakly interacting photons. The Mott state with density one exists up to temperatures T/g > or = 0.03, implying experimentally accessible temperatures for realistic cavity couplings g.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA