Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839967

RESUMO

Sponges are the most basal metazoan phylum1 and may have played important roles in modulating the redox architecture of Neoproterozoic oceans2. Although molecular clocks predict that sponges diverged in the Neoproterozoic era3,4, their fossils have not been unequivocally demonstrated before the Cambrian period5-8, possibly because Precambrian sponges were aspiculate and non-biomineralized9. Here we describe a late-Ediacaran fossil, Helicolocellus cantori gen. et sp. nov., from the Dengying Formation (around 551-539 million years ago) of South China. This fossil is reconstructed as a large, stemmed benthic organism with a goblet-shaped body more than 0.4 m in height, with a body wall consisting of at least three orders of nested grids defined by quadrate fields, resembling a Cantor dust fractal pattern. The resulting lattice is interpreted as an organic skeleton comprising orthogonally arranged cruciform elements, architecturally similar to some hexactinellid sponges, although the latter are built with biomineralized spicules. A Bayesian phylogenetic analysis resolves H. cantori as a crown-group sponge related to the Hexactinellida. H. cantori confirms that sponges diverged and existed in the Precambrian as non-biomineralizing animals with an organic skeleton. Considering that siliceous biomineralization may have evolved independently among sponge classes10-13, we question the validity of biomineralized spicules as a necessary criterion for the identification of Precambrian sponge fossils.

2.
Food Qual Prefer ; 1132024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38222065

RESUMO

Food-related studies often categorize foods using criteria such as fat and sugar content (e.g., high-fat, high-sugar foods; low-fat, low-sugar foods), and use these categorizations for further analyses. While these criteria are relevant to nutritional health, it is unclear whether they agree with the ways in which we typically group foods. Do these objective categories correspond to our subjective sense? To address this question, we recruited a group of 487 online participants to perform a triplet comparison task involving implicit object similarity judgements on images of 36 foods, which varied in their levels of fat and sugar. We also acquired subjective ratings of other food properties from another set of 369 online participants. Data from the online triplet task was used to generate a similarity matrix of these 36 foods. Principal Components Analysis (PCA) of this matrix identified that the strongest determinant of food similarity (the first PC) was most highly related to participants' judgements of how processed the foods were, while the second component was most related to estimates of sugar and fat content. K-means clustering analysis revealed five emergent food groupings along these PC axes: sweets, fats, starches, fruits, and vegetables. Our results suggest that naturalistic categorizations of food are driven primarily by knowledge of the origin of foods (i.e., grown or manufactured), rather than by their sensory or macronutrient properties. These differences should be considered and explored when developing methods for scientific food studies.

3.
Front Psychol ; 13: 938663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903735

RESUMO

"Parting is such sweet sorrow." Taste metaphors provide a rich vocabulary for describing emotional experience, potentially serving as an adaptive mechanism for conveying abstract emotional concepts using concrete verbal references to our shared experience. We theorized that the popularity of these expressions results from the close association with hedonic valence shared by these two domains of experience. To explore the possibility that this affective quality underlies the semantic similarity of these domains, we used a behavioral "odd-one-out" task in an online sample of 1059 participants in order to examine the semantic similarity of concepts related to emotion, taste, and color, another rich source of sensory metaphors. We found that the semantic similarity of emotion and taste concepts was greater than that of emotion and color concepts. Importantly, the similarity of taste and emotion concepts was strongly related to their similarity in hedonic valence, a relationship which was also significantly greater than that present between color and emotion. These results suggest that the common core of valence between taste and emotion concepts allows us to bridge the conceptual divide between our shared sensory environment and our internal emotional experience.

4.
Disaster Med Public Health Prep ; 17: e172, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35770776

RESUMO

OBJECTIVE: In times of repeated disaster events, including natural disasters and pandemics, public health workers must recover rapidly to respond to subsequent events. Understanding predictors of time to recovery and developing predictive models of time to recovery can aid planning and management. METHODS: We examined 681 public health workers (21-72 y, M(standard deviation [SD]) = 48.25(10.15); 79% female) 1 mo before (T1) and 9 mo after (T2) the 2005 hurricane season. Demographics, trauma history, social support, time to recover from previous hurricane season, and predisaster work productivity were assessed at T1. T2 assessed previous disaster work, initial emotional response, and personal hurricane injury/damage. The primary outcome was time to recover from the most recent hurricane event. RESULTS: Multivariate analyses found that less support (T1; odds ratio [OR] = .74[95% confidence interval [CI] = .60-.92]), longer previous recovery time (T1; OR = 5.22[95%CI = 3.01-9.08]), lower predisaster work productivity (T1; OR = 1.98[95%CI = 1.08-3.61]), disaster-related personal injury/damage (T2; OR = 3.08[95%CI = 1.70-5.58]), and initial emotional response (T2; OR = 1.71[95%CI = 1.34-2.19]) were associated with longer recovery time (T2). CONCLUSIONS: Recovery time was adversely affected in disaster responders with a history of longer recovery time, personal injury/damage, lower work productivity following prior hurricanes, and initial emotional response, whereas responders with social support had shorter recovery time. Predictors of recovery time should be a focus for disaster preparedness planners.


Assuntos
Tempestades Ciclônicas , Planejamento em Desastres , Desastres , Humanos , Feminino , Masculino , Saúde Pública , Pessoal de Saúde , Mão de Obra em Saúde
5.
Death Stud ; 46(4): 949-957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32692609

RESUMO

We describe the development of an empirically-derived codebook for qualitative data concerning the impact of grief on the interpersonal relationships of bereaved individuals. Relatives (N = 39) of deceased military service members participated in focus groups concerning how grief influenced their relationships across multiple interpersonal domains, including family, friends, community, and with the deceased. Focus group transcripts were coded using a stepwise process consistent with grounded theory to identify and categorize recurrent themes. The process yielded a comprehensive codebook containing 44 nodes with definitions and examples. The codebook provides researchers with an empirically-grounded analytic tool for future studies on bereavement.


Assuntos
Luto , Família , Amigos , Pesar , Humanos , Relações Interpessoais
6.
Disaster Med Public Health Prep ; 16(3): 1046-1052, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33719999

RESUMO

OBJECTIVE: Community characteristics, such as collective efficacy, a measure of community strength, can affect behavioral responses following disasters. We measured collective efficacy 1 month before multiple hurricanes in 2005, and assessed its association to preparedness 9 months following the hurricane season. METHODS: Participants were 631 Florida Department of Health workers who responded to multiple hurricanes in 2004 and 2005. They completed questionnaires that were distributed electronically approximately 1 month before (6.2005-T1) and 9 months after (6.2006-T2) several storms over the 2005 hurricane season. Collective efficacy, preparedness behaviors, and socio-demographics were assessed at T1, and preparedness behaviors and hurricane-related characteristics (injury, community-related damage) were assessed at T2. Participant ages ranged from 21-72 (M(SD) = 48.50 (10.15)), and the majority were female (78%). RESULTS: In linear regression models, univariate analyses indicated that being older (B = 0.01, SE = 0.003, P < 0.001), White (B = 0.22, SE = 0.08, P < 0.01), and married (B = 0.05, SE = 0.02, p < 0.001) was associated with preparedness following the 2005 hurricanes. Multivariate analyses, adjusting for socio-demographics, preparedness (T1), and hurricane-related characteristics (T2), found that higher collective efficacy (T1) was associated with preparedness after the hurricanes (B = 0.10, SE = 0.03, P < 0.01; and B = 0.47, SE = 0.04, P < 0.001 respectively). CONCLUSION: Programs enhancing collective efficacy may be a significant part of prevention practices and promote preparedness efforts before disasters.


Assuntos
Tempestades Ciclônicas , Desastres , Humanos , Feminino , Masculino , Estudos Longitudinais , Inquéritos e Questionários , Florida
7.
Sci Adv ; 7(30)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34301594

RESUMO

Molecular timescales estimate that early animal lineages diverged tens of millions of years before their earliest unequivocal fossil evidence. The Ediacaran macrobiota (~574 to 538 million years ago) are largely eschewed from this debate, primarily due to their extreme phylogenetic uncertainty, but remain germane. We characterize the development of Charnia masoni and establish the affinity of rangeomorphs, among the oldest and most enigmatic components of the Ediacaran macrobiota. We provide the first direct evidence for the internal interconnected nature of rangeomorphs and show that Charnia was constructed of repeated branches that derived successively from pre-existing branches. We find homology and rationalize morphogenesis between disparate rangeomorph taxa, before producing a phylogenetic analysis, resolving Charnia as a stem-eumetazoan and expanding the anatomical disparity of that group to include a long-extinct bodyplan. These data bring competing records of early animal evolution into closer agreement, reformulating our understanding of the evolutionary emergence of animal bodyplans.

8.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33384331

RESUMO

Previous studies have shown that the conceptual representation of food involves brain regions associated with taste perception. The specificity of this response, however, is unknown. Does viewing pictures of food produce a general, nonspecific response in taste-sensitive regions of the brain? Or is the response specific for how a particular food tastes? Building on recent findings that specific tastes can be decoded from taste-sensitive regions of insular cortex, we asked whether viewing pictures of foods associated with a specific taste (e.g., sweet, salty, and sour) can also be decoded from these same regions, and if so, are the patterns of neural activity elicited by the pictures and their associated tastes similar? Using ultrahigh-resolution functional magnetic resonance imaging at high magnetic field strength (7-Tesla), we were able to decode specific tastes delivered during scanning, as well as the specific taste category associated with food pictures within the dorsal mid-insula, a primary taste responsive region of brain. Thus, merely viewing food pictures triggers an automatic retrieval of specific taste quality information associated with the depicted foods, within gustatory cortex. However, the patterns of activity elicited by pictures and their associated tastes were unrelated, thus suggesting a clear neural distinction between inferred and directly experienced sensory events. These data show how higher-order inferences derived from stimuli in one modality (i.e., vision) can be represented in brain regions typically thought to represent only low-level information about a different modality (i.e., taste).


Assuntos
Percepção Gustatória/fisiologia , Percepção Visual/fisiologia , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Feminino , Alimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Paladar/fisiologia
9.
Interface Focus ; 10(4): 20190109, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32642052

RESUMO

The broad-scale environment plays a substantial role in shaping modern marine ecosystems, but the degree to which palaeocommunities were influenced by their environment is unclear. To investigate how broad-scale environment influenced the community ecology of early animal ecosystems, we employed spatial point process analyses (SPPA) to examine the community structure of seven late Ediacaran (558-550 Ma) bedding-plane assemblages drawn from a range of environmental settings and global localities. The studied palaeocommunities exhibit marked differences in the response of their component taxa to sub-metre-scale habitat heterogeneities on the seafloor. Shallow-marine (nearshore) palaeocommunities were heavily influenced by local habitat heterogeneities, in contrast to their deeper-water counterparts. The local patchiness within shallow-water communities may have been further accentuated by the presence of grazers and detritivores, whose behaviours potentially initiated a propagation of increasing habitat heterogeneity of benthic communities from shallow to deep-marine depositional environments. Higher species richness in shallow-water Ediacaran assemblages compared to deep-water counterparts across the studied time-interval could have been driven by this environmental patchiness, because habitat heterogeneities increase species richness in modern marine environments. Our results provide quantitative support for the 'Savannah' hypothesis for early animal diversification-whereby Ediacaran diversification was driven by patchiness in the local benthic environment.

10.
Curr Biol ; 30(7): 1322-1328.e3, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142705

RESUMO

Fossils of the Ediacaran macrobiota (∼571-539 mya) record phylogenetically diverse marine palaeocommunities, including early animals, which pre-date the "Cambrian Explosion" [1-4]. Benthic forms with a frondose gross morphology, assigned to the morphogroups Rangeomorpha [5] and Frondomorpha (see also Arboreomorpha) [6-8], are among the most temporally wide-ranging and environmentally tolerant members of the Ediacaran macrobiota [6] and dominated deep-marine ecosystems ∼571-560 mya [9-11]. Investigations into the morphology [12-14], palaeoecology [10, 15, 16], reproductive strategies [17, 18], feeding methods [9, 19], and morphogenesis of frondose taxa together constrain their phylogenetic position to the metazoan (for Rangeomorpha) or eumetazoan (e.g., Arborea) total groups [14, 20], but tighter constraint is currently lacking. Here, we describe fossils of abundant filamentous organic structures preserved among frond-dominated fossil assemblages in Newfoundland (Canada). The filaments constitute a prominent component of the ecosystems, and exhibit clear physical associations with at least seven frondose taxa. Individual specimens of one uniterminal rangeomorph taxon appear to be directly connected by filaments across distances of centimeters to meters. Such physical linkages are interpreted to reflect evidence for stolonic connections: a conclusion with potential implications for the phylogenetic placement and palaeoecology of frondose organisms. Consideration of extant stoloniferous organisms suggests that Ediacaran frondose taxa were likely clonal and resurrects the possibility that they may have been colonial (e.g., [21, 22]). VIDEO ABSTRACT.


Assuntos
Evolução Biológica , Ecossistema , Fósseis/anatomia & histologia , Invertebrados , Animais , Invertebrados/anatomia & histologia , Invertebrados/fisiologia , Terra Nova e Labrador
11.
Depress Anxiety ; 37(1): 54-62, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31916661

RESUMO

BACKGROUND: Bereavement is associated with cognitive difficulties, but it is unclear whether these difficulties are associated with normative and/or complicated grief (CG) and how comorbid depression and anxiety contribute to them. Self-reported "minor errors in thinking" (i.e., cognitive failures) may manifest following bereavement and be differentially affected by CG, anxiety, and depression. METHODS: Associations between perceived cognitive failures and CG, anxiety, and depression were investigated in 581 bereaved participants. To examine both single and comorbid conditions across the spectrum of bereaved participants, these relationships were examined using both linear regressions and group comparisons. RESULTS: Continuous measures of depression, anxiety, and grief each independently predicted perceived cognitive failures. Group comparisons indicated that the group with three comorbid conditions had the highest frequency of perceived cognitive failures and the group with no conditions had the lowest. In addition, groups with threshold depression levels (both alone and comorbid with another condition) had higher frequencies of perceived cognitive failures than other groups, suggesting that depression was more strongly associated with perceived cognitive failures than CG or anxiety. CONCLUSIONS: Future research about cognition following bereavement should address how multiple mental health symptoms or conditions combine to affect perceived and actual cognitive capacity.


Assuntos
Ansiedade/complicações , Ansiedade/psicologia , Luto , Cognição , Depressão/complicações , Depressão/psicologia , Pesar , Adolescente , Adulto , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autorrelato , Adulto Jovem
12.
J Neurosci ; 40(5): 1042-1052, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31836661

RESUMO

In the mammalian brain, the insula is the primary cortical substrate involved in the perception of taste. Recent imaging studies in rodents have identified a "gustotopic" organization in the insula, whereby distinct insula regions are selectively responsive to one of the five basic tastes. However, numerous studies in monkeys have reported that gustatory cortical neurons are broadly-tuned to multiple tastes, and tastes are not represented in discrete spatial locations. Neuroimaging studies in humans have thus far been unable to discern between these two models, though this may be because of the relatively low spatial resolution used in taste studies to date. In the present study, we examined the spatial representation of taste within the human brain using ultra-high resolution functional magnetic resonance imaging (MRI) at high magnetic field strength (7-tesla). During scanning, male and female participants tasted sweet, salty, sour, and tasteless liquids, delivered via a custom-built MRI-compatible tastant-delivery system. Our univariate analyses revealed that all tastes (vs tasteless) activated primary taste cortex within the bilateral dorsal mid-insula, but no brain region exhibited a consistent preference for any individual taste. However, our multivariate searchlight analyses were able to reliably decode the identity of distinct tastes within those mid-insula regions, as well as brain regions involved in affect and reward, such as the striatum, orbitofrontal cortex, and amygdala. These results suggest that taste quality is not represented topographically, but by a distributed population code, both within primary taste cortex as well as regions involved in processing the hedonic and aversive properties of taste.SIGNIFICANCE STATEMENT The insula is the primary cortical substrate involved in taste perception, yet some question remains as to whether this region represents distinct tastes topographically or via a population code. Using high field (7-tesla), high-resolution functional magnetic resonance imaging in humans, we examined the representation of different tastes delivered during scanning. All tastes activated primary taste cortex within the bilateral mid-insula, but no brain region exhibited any consistent taste preference. However, multivariate analyses reliably decoded taste quality within the bilateral mid-insula as well as the striatum, orbitofrontal cortex, and bilateral amygdala. This suggests that taste quality is represented by a spatial population code within regions involved in sensory and appetitive properties of taste.


Assuntos
Encéfalo/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Adulto , Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiologia , Adulto Jovem
13.
Ecol Lett ; 22(12): 2028-2038, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31515929

RESUMO

The relative influence of niche vs. neutral processes in ecosystem dynamics is an on-going debate, but the extent to which they structured the earliest animal communities is unknown. Some of the oldest known metazoan-dominated paleocommunities occur in Ediacaran age (~ 565 million years old) strata in Newfoundland, Canada and Charnwood Forest, UK. These comprise large and diverse populations of sessile organisms that are amenable to spatial point process analyses, enabling inference of the most likely underlying niche or neutral processes governing community structure. We mapped seven Ediacaran paleocommunities using LiDAR, photogrammetry and a laser line probe. We found that neutral processes dominate these paleocommunities, with niche processes exerting limited influence, in contrast with the niche-dominated dynamics of modern marine ecosystems. The dominance of neutral processes suggests that early metazoan diversification may not have been driven by systematic adaptations to the local environment, but instead may have resulted from stochastic demographic differences.


Assuntos
Ecossistema , Florestas , Animais , Canadá
14.
Nat Ecol Evol ; 3(5): 858, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30979959

RESUMO

In the version of this article initially published, the reference "Mitchell, E. G., & Kenchington, C. G. The utility of height for the Ediacaran organisms of Mistaken Point. Nat. Ecol. Evol. 2, 1218-1222 (2018)." was missing. A callout to the reference should have been placed at the end of this sentence: "For biotic replacement to occur, taxa must be both spatially collocated and have similar resource requirements, yet spatial analyses of contemporary communities find only very limited instances of resource competition." The reference has been added to the list, and the error has been corrected in the PDF and HTML versions of the article.

15.
Pap Palaeontol ; 5(1): 157-176, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31007942

RESUMO

The Ediacaran macrofossil Charnia masoni Ford is perhaps the most iconic member of the Rangeomorpha: a group of seemingly sessile, frondose organisms that dominates late Ediacaran benthic, deep-marine fossil assemblages. Despite C. masoni exhibiting broad palaeogeographical and stratigraphical ranges, there have been few morphological studies that consider the variation observed among populations of specimens derived from multiple global localities. We present an analysis of C. masoni that evaluates specimens from the UK, Canada and Russia, representing the largest morphological study of this taxon to date. We describe substantial morphological variation within C. masoni and present a new morphological model for this species that has significant implications both for interpretation of rangeomorph architecture, and potentially for existing taxonomic schemes. Previous reconstructions of Charnia include assumptions regarding the presence of structures seen in other rangeomorphs (e.g. an internal stalk) and of homogeneity in higher order branch morphology; observations that are not borne out by our investigations. We describe variation in the morphology of third and fourth order branches, as well as variation in gross structure near the base of the frond. The diagnosis of Charnia masoni is emended to take account of these new features. These findings highlight the need for large-scale analyses of rangeomorph morphology in order to better understand the biology of this long-enigmatic group.

16.
Nat Ecol Evol ; 3(4): 528-538, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858589

RESUMO

The 'Cambrian Explosion' describes the rapid increase in animal diversity and abundance, as manifest in the fossil record, between ~540 and 520 million years ago (Ma). This event, however, is nested within a far more ancient record of macrofossils extending at least into the late Ediacaran at ~571 Ma. The evolutionary events documented during the Ediacaran-Cambrian interval coincide with geochemical evidence for the modernisation of Earth's biogeochemical cycles. Holistic integration of fossil and geochemical records leads us to challenge the notion that the Ediacaran and Cambrian worlds were markedly distinct, and places biotic and environmental change within a longer-term narrative. We propose that the evolution of metazoans may have been facilitated by a series of dynamic and global changes in redox conditions and nutrient supply, which, potentially together with biotic feedbacks, enabled turnover events that sustained multiple phases of radiation. We argue that early metazoan diversification should be recast as a series of successive, transitional radiations that extended from the late Ediacaran and continued through the early Palaeozoic. We conclude that while the Cambrian Explosion represents a radiation of crown-group bilaterians, it was simply one phase amongst several metazoan radiations, some older and some younger.


Assuntos
Biodiversidade , Evolução Biológica , Fósseis , Animais , Biota
17.
Nat Ecol Evol ; 3(4): 512-514, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742104

Assuntos
Biota , Fósseis , Filogenia
18.
Biol Rev Camb Philos Soc ; 93(2): 914-932, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29105292

RESUMO

Rocks of the Ediacaran System (635-541 Ma) preserve fossil evidence of some of the earliest complex macroscopic organisms, many of which have been interpreted as animals. However, the unusual morphologies of some of these organisms have made it difficult to resolve their biological relationships to modern metazoan groups. Alternative competing phylogenetic interpretations have been proposed for Ediacaran taxa, including algae, fungi, lichens, rhizoid protists, and even an extinct higher-order group (Vendobionta). If a metazoan affinity can be demonstrated for these organisms, as advocated by many researchers, they could prove informative in debates concerning the evolution of the metazoan body axis, the making and breaking of axial symmetries, and the appearance of a metameric body plan. Attempts to decipher members of the enigmatic Ediacaran macrobiota have largely involved study of morphology: comparative analysis of their developmental phases has received little attention. Here we present what is known of ontogeny across the three iconic Ediacaran taxa Charnia masoni, Dickinsonia costata and Pteridinium simplex, together with new ontogenetic data and insights. We use these data and interpretations to re-evaluate the phylogenetic position of the broader Ediacaran morphogroups to which these taxa are considered to belong (rangeomorphs, dickinsoniomorphs and erniettomorphs). We conclude, based on the available evidence, that the affinities of the rangeomorphs and the dickinsoniomorphs lie within Metazoa.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Eucariotos , Animais , Fósseis
19.
Nat Ecol Evol ; 1(10): 1455-1464, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29185521

RESUMO

The evolutionary events during the Ediacaran-Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian fossil record. We report an assemblage of ichnofossils from Ediacaran-Cambrian siltstones in Brazil, alongside U-Pb radioisotopic dates that constrain the age of the oldest specimens to 555-542 Myr. X-ray microtomography reveals three-dimensionally preserved traces ranging from 50 to 600 µm in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphologies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. This assemblage demonstrates animal-sediment interactions in the latest Ediacaran period, and provides the oldest known fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal niches during the late Ediacaran.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Invertebrados/anatomia & histologia , Animais , Brasil , Paleontologia
20.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904140

RESUMO

The late Ediacaran soft-bodied macroorganism Dickinsonia (age range approx. 560-550 Ma) has often been interpreted as an early animal, and is increasingly invoked in debate on the evolutionary assembly of eumetazoan body plans. However, conclusive positive evidence in support of such a phylogenetic affinity has not been forthcoming. Here we subject a collection of Dickinsonia specimens interpreted to represent multiple ontogenetic stages to a novel, quantitative method for studying growth and development in organisms with an iterative body plan. Our study demonstrates that Dickinsonia grew via pre-terminal 'deltoidal' insertion and inflation of constructional units, followed by a later inflation-dominated phase of growth. This growth model is contrary to the widely held assumption that Dickinsonia grew via terminal addition of units at the end of the organism bearing the smallest units. When considered alongside morphological and behavioural attributes, our developmental data phylogenetically constrain Dickinsonia to the Metazoa, specifically the Eumetazoa plus Placozoa total group. Our findings have implications for the use of Dickinsonia in developmental debates surrounding the metazoan acquisition of axis specification and metamerism.


Assuntos
Evolução Biológica , Fósseis , Invertebrados/classificação , Filogenia , Animais , Biologia do Desenvolvimento , Invertebrados/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA