Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; PP2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625766

RESUMO

Early detection and treatment of breast cancer can significantly reduce patient mortality, and mammogram is an effective method for early screening. Computer-aided diagnosis (CAD) of mammography based on deep learning can assist radiologists in making more objective and accurate judgments. However, existing methods often depend on datasets with manual segmentation annotations. In addition, due to the large image sizes and small lesion proportions, many methods that do not use region of interest (ROI) mostly rely on multi-scale and multi-feature fusion models. These shortcomings increase the labor, money, and computational overhead of applying the model. Therefore, a deep location soft-embedding-based network with regional scoring (DLSEN-RS) is proposed. DLSEN-RS is an end-to-end mammography image classification method containing only one feature extractor and relies on positional embedding (PE) and aggregation pooling (AP) modules to locate lesion areas without bounding boxes, transfer learning, or multi-stage training. In particular, the introduced PE and AP modules exhibit versatility across various CNN models and improve the model's tumor localization and diagnostic accuracy for mammography images. Experiments are conducted on published INbreast and CBIS-DDSM datasets, and compared to previous state-of-the-art mammographic image classification methods, DLSEN-RS performed satisfactorily.

2.
IEEE Trans Med Imaging ; 41(12): 3787-3798, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921340

RESUMO

How spontaneous brain neural activities emerge from the underlying anatomical architecture, characterized by structural connectivity (SC), has puzzled researchers for a long time. Over the past decades, much effort has been directed toward the graph modeling of SC, in which the brain SC is generally considered as relatively invariant. However, the graph representation of SC is unable to directly describe the connections between anatomically unconnected brain regions and fail to model the negative functional correlations. Here, we extend the static graph model to a spatiotemporal varying hypergraph Laplacian diffusion (STV-HGLD) model to describe the propagation of the spontaneous neural activity in human brain by incorporating the Laplacian of the hypergraph representation of the structural connectome ( h SC) into the regular wave equation. Theoretical solution shows that the dynamic functional couplings between brain regions fluctuate in the form of an exponential wave regulated by the spatiotemporal varying Laplacian of h SC. Empirical study suggests that the cortical wave might give rise to resonance with SC during the self-organizing interplay between excitation and inhibition among brain regions, which orchestrates the cortical waves propagating with harmonics emanating from the h SC while being bound by the natural frequencies of SC. Besides, the average statistical dependencies between brain regions, normally defined as the functional connectivity (FC), arises just at the moment before the cortical wave reaches the steady state after the wave spreads across all the brain regions. Comprehensive tests on four extensively studied empirical brain connectome datasets with different resolutions confirm our theory and findings.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Descanso , Difusão , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA