Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Plant Physiol ; 299: 154277, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38843655

RESUMO

Glomerella leaf spot (GLS), caused by Colletotrichum fructicola (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of MdHB-7 overexpressing (MdHB-7-OE) and interference (MdHB-7-RNAi) transgenic plants with Cf revealed that MdHB-7, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in MdHB-7-OE plants than in 'GL-3' plants; the content of ABA and the expression of ABA biosynthesis genes were higher in MdHB-7-OE plants than in 'GL-3' plants. Further analysis indicated that the content of phenolics and chitinase and ß-1, 3 glucanase activities were lower and H2O2 accumulation was higher in MdHB-7-OE plants than in 'GL-3' plants. The opposite patterns were observed in MdHB-7-RNAi apple plants. Overall, our results indicate that MdHB-7 plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H2O2.

2.
Mol Plant Pathol ; 25(4): e13457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619873

RESUMO

Glomerella leaf spot (GLS), a fungal disease caused by Colletotrichum fructicola, severely affects apple (Malus domestica) quality and yield. In this study, we found that the transcription factor MdWRKY71 was significantly induced by C. fructicola infection in the GLS-susceptible apple cultivar Royal Gala. The overexpression of MdWRKY71 in apple leaves resulted in increased susceptibility to C. fructicola, whereas RNA interference of MdWRKY71 in leaves showed the opposite phenotypes. These findings suggest that MdWRKY71 functions as a susceptibility factor for the apple-C. fructicola interaction. Furthermore, MdWRKY71 directly bound to the promoter of the salicylic acid (SA) degradation gene Downy Mildew Resistant 6 (DMR6)-Like Oxygenase 1 (DLO1) and promoted its expression, resulting in a reduced SA level. The sensitivity of 35S:MdWRKY71 leaves to C. fructicola can be effectively alleviated by knocking down MdDLO1 expression, confirming the critical role of MdWRKY71-mediated SA degradation via regulating MdDLO1 expression in GLS susceptibility. In summary, we identified a GLS susceptibility factor, MdWRKY71, that targets the apple SA degradation pathway to promote fungal infection.


Assuntos
Fabaceae , Malus , Phyllachorales , Malus/genética , Fenótipo , Ácido Salicílico
3.
J Colloid Interface Sci ; 666: 118-130, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588624

RESUMO

The phenol-formaldehyde (PF) resin is an economical precursor for spherical hard carbon (HC) anodes for sodium-ion batteries (SIBs). However, achieving precise molecular-level control of PF-based HC microspheres, particularly for optimizing ion transport microstructure, is challenging. Here, a sodium linoleate (SL)-assisted strategy is proposed to enable molecular-level engineering of PF-based HC microspheres. PF microspheres are synthesized through the polymerization of 3-aminophenol and formaldehyde, initially forming oxazine rings and then undergoing ring-opening polymerization to create a macromolecular network. SL functions as both a surfactant to control microsphere size and a catalyst to enhance ring-opening polymerization and increase polymerization of PF resin. These modifications lead to reduced microsphere diameter, increased interlayer spacing, enhanced graphitization, and significantly improved electron and ion transfer. The synthesized HC microspheres exhibit a remarkable reversible capacity of 337 mAh/g, maintaining 96.9 mAh/g even at a high current density of 5.0 A/g. Furthermore, the full cell demonstrates a high capacity of 150 mAh/g, an energy density of 125.3 Wh kg-1, an impressive initial coulombic efficiency (ICE) of 930.3% at 1 A/g, and remarkable long-term stability over 3000 cycles. This study highlights the potential of surfactant-assisted molecular-level engineering in customizing HC microspheres for advanced SIBs.

4.
Integr Zool ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509845

RESUMO

We found that the area of black round or irregular-shaped spots on the tiger's nose increased with age, indicating a positive relationship between age and nose features. We used the deep learning model to train the facial and nose image features to identify the age of Amur tigers, using a combination of classification and prediction methods to achieve age determination with an accuracy of 87.81%.

5.
Plant Cell Environ ; 47(7): 2491-2509, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515330

RESUMO

Fusarium spp., a necrotrophic soil-borne pathogen, causes root rot disease on many crops. CERK1, as a typical pattern recognition receptor, has been widely studied. However, the function of CERK1 during plant-Fusarium interaction has not been well described. We determined that MdCERK1 is a susceptibility gene in the apple-Fusarium solani (Fs) interaction, and jasmonic acid (JA) plays a crucial role in this process. MdCERK1 directly targets and phosphorylates the lipoxygenase MdLOX2.1, an enzyme initiating the JA biosynthesis, at positions Ser326 and Thr327. These phosphorylations inhibit its translocation from the cytosol to the chloroplasts, leading to a compromised JA biosynthesis. Fs upregulates MdCERK1 expression during infection. In turn, when the JA level is low, the apple MdWRKY71, a transcriptional repressor of MdCERK1, is markedly upregulated and phosphorylated at Thr99 and Thr102 residues by the MAP kinase MdMMK2. The phosphorylation of MdWRKY71 enhances its transcription inhibition on MdCERK1. Taken together, MdCERK1 plays a novel role in limiting JA biosynthesis. There seems to be an arms race between apple and Fs, in which Fs activates MdCERK1 expression to reduce the JA level, while apple senses the low JA level and activates the MdMMK2-MdWRKY71 module to elevate JA level by inhibiting MdCERK1 expression.


Assuntos
Ciclopentanos , Fusarium , Regulação da Expressão Gênica de Plantas , Malus , Oxilipinas , Doenças das Plantas , Proteínas de Plantas , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Malus/microbiologia , Malus/genética , Malus/metabolismo , Fusarium/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/microbiologia , Retroalimentação Fisiológica , Resistência à Doença/genética , Fosforilação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
6.
J Gastroenterol Hepatol ; 39(5): 847-857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38240493

RESUMO

BACKGROUND: Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have a higher risk of osteoporosis/fractures; however, the causal relationship remains unclear. METHODS: Publicly available genome-wide association studies (GWASs) were used for Mendelian randomization (MR) analysis. GWASs of NAFLD and fractures were obtained from the FinnGen Consortium. GWASs of bone mineral density (BMD) were derived from a meta-analysis. GWASs of obesity, diabetes, liver function, and serum lipid-related metrics were used to clarify whether the accompanying NAFLD symptoms contributed to fractures. Moreover, two additional GWASs of NAFLD were applied. RESULTS: A causal association was not observed between NAFLD and BMD using GWASs from the FinnGen Consortium. However, a causal relationship between NAFLD and femoral neck-BMD (FN-BMD), a suggestive relationship between fibrosis and FN-BMD, and between NAFLD and osteoporosis were identified in replication GWASs. Genetically proxied body mass index (BMI), high-density lipoprotein (HDL), and hip circumference increased the likelihood of lower limb fractures. The waist-to-hip ratio decreased, whereas glycated hemoglobin (HbA1C) and homeostasis model assessment of ß-cell function (HOMA-B) increased the risk of forearm fractures. Low-density lipoprotein (LDL) reduced, whereas HbA1C increased the incidence of femoral fractures. Alkaline phosphatase (ALP) raised the risk of foot fractures. However, after a multivariate MR analysis (adjusted for BMI), all the relationships became insignificant. CONCLUSIONS: NAFLD caused reduced BMD, and genetically predicted HDL, LDL, HbA1C, HOMA-B, ALP, hip circumference, and waist-to-hip ratio causally increased the risk of fractures. BMI may mediate causal relationships. Larger GWASs are required to verify this finding.


Assuntos
Índice de Massa Corporal , Densidade Óssea , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Hepatopatia Gordurosa não Alcoólica , Osteoporose , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Humanos , Densidade Óssea/genética , Osteoporose/genética , Osteoporose/etiologia , Relação Cintura-Quadril , Fraturas Ósseas/etiologia , Fraturas Ósseas/genética , Fraturas Ósseas/epidemiologia , Hemoglobinas Glicadas/metabolismo , Colo do Fêmur/diagnóstico por imagem , Risco , Lipoproteínas HDL/sangue
7.
Plant Physiol ; 195(1): 502-517, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243831

RESUMO

Apple Valsa canker, caused by the ascomycete fungus Valsa mali, employs virulence effectors to disturb host immunity and poses a substantial threat to the apple industry. However, our understanding of how V. mali effectors regulate host defense responses remains limited. Here, we identified the V. mali effector Vm_04797, which was upregulated during the early infection stage. Vm_04797, a secreted protein, suppressed Inverted formin 1 (INF1)-triggered cell death in Nicotiana benthamiana and performed virulence functions inside plant cells. Vm_04797 deletion mutants showed substantially reduced virulence toward apple. The adaptor protein MdAP-2ß positively regulated apple Valsa canker resistance and was targeted and degraded by Vm_04797 via the ubiquitination pathway. The in vitro analysis suggested that Vm_04797 possesses E3 ubiquitin ligase activity. Further analysis revealed that MdAP-2ß is involved in autophagy by interacting with Malus domestica autophagy protein 16 MdATG16 and promoting its accumulation. By degrading MdAP-2ß, Vm_04797 inhibited autophagic flux, thereby disrupting the defense response mediated by autophagy. Our findings provide insights into the molecular mechanisms employed by the effectors of E3 ubiquitin ligase activity in ascomycete fungi to regulate host immunity.


Assuntos
Ascomicetos , Autofagia , Proteínas Fúngicas , Malus , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Doenças das Plantas/microbiologia , Malus/microbiologia , Malus/metabolismo , Malus/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Nicotiana/microbiologia , Nicotiana/genética , Nicotiana/metabolismo , Interações Hospedeiro-Patógeno , Virulência , Imunidade Vegetal/genética , Ubiquitinação , Resistência à Doença/genética
8.
Plant J ; 117(4): 1250-1263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991990

RESUMO

High-temperature stress results in protein misfolding/unfolding and subsequently promotes the accumulation of cytotoxic protein aggregates that can compromise cell survival. Heat shock proteins (HSPs) function as molecular chaperones that coordinate the refolding and degradation of aggregated proteins to mitigate the detrimental effects of high temperatures. However, the relationship between HSPs and protein aggregates in apples under high temperatures remains unclear. Here, we show that an apple (Malus domestica) chloroplast-localized, heat-sensitive elongation factor Tu (MdEF-Tu), positively regulates apple thermotolerance when it is overexpressed. Transgenic apple plants exhibited higher photosynthetic capacity and better integrity of chloroplasts during heat stress. Under high temperatures, MdEF-Tu formed insoluble aggregates accompanied by ubiquitination modifications. Furthermore, we identified a chaperone heat shock protein (MdHsp70), as an interacting protein of MdEF-Tu. Moreover, we observed obviously elevated MdHsp70 levels in 35S: MdEF-Tu apple plants that prevented the accumulation of ubiquitinated MdEF-Tu aggregates, which positively contributes to the thermotolerance of the transgenic plants. Overall, our results provide new insights into the molecular chaperone function of MdHsp70, which mediates the homeostasis of thermosensitive proteins under high temperatures.


Assuntos
Malus , Termotolerância , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Malus/genética , Malus/metabolismo , Agregados Proteicos , Chaperonas Moleculares/metabolismo , Plantas Geneticamente Modificadas/metabolismo
9.
Int J Surg ; 110(2): 1224-1233, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016138

RESUMO

BACKGROUND: The authors aimed to comprehensively evaluate the efficacy and safety of antibiotic prophylaxis through surgical and nonsurgical scenarios and assess the strength of evidence. MATERIALS AND METHODS: The authors performed an umbrella review of meta-analyses of randomized controlled trials (RCTs). An evidence map was created to summarize the absolute benefits of antibiotic prophylaxis in each scenario and certainty of evidence. RESULTS: Seventy-five meta-analyses proved eligible with 725 RCTs and 78 clinical scenarios in surgical and medical prophylaxis. Of 119 health outcomes, 67 (56.3%) showed statistically significant benefits, 34 of which were supported by convincing or highly suggestive evidence from RCTs. For surgeries, antibiotic prophylaxis may minimize infection occurrences in most surgeries except Mohs surgery, simple hand surgery, herniorrhaphy surgery, hepatectomy, thyroid surgery, rhinoplasty, stented distal hypospadias repair, midurethral sling placement, endoscopic sinus surgery, and transurethral resection of bladder tumors with only low to very low certainty evidence. For nonsurgery invasive procedures, only low to very low certainty evidence showed benefits of antibiotic prophylaxis for cystoscopy, postoperative urinary catheterization, and urodynamic study. For medical prophylaxis, antibiotic prophylaxis showed greater benefits in nonemergency scenarios, in which patients were mainly with weakened immune systems, or at risk of recurrent chronic infections. Antibiotics prophylaxis may increase antibiotic resistance or other adverse events in most scenarios and reached significance in cystoscopy, afebrile neutropenia following chemotherapy and hematopoietic stem cell transplantation. CONCLUSIONS: Antibiotic prophylaxis in surgical and nonsurgical scenarios is generally effective and seems independent of surgical cleanliness and urgency of diseases. Its safety is not well determined due to lack of available data. Nevertheless, the low quality of current evidence limits the external validity of these findings, necessitating clinicians to judiciously assess indications, balancing low infection rates with antibiotic-related side effects.


Assuntos
Antibacterianos , Antibioticoprofilaxia , Humanos , Masculino , Antibacterianos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Metanálise como Assunto
10.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113132

RESUMO

Nonalcoholic fatty liver disease (NAFLD), which affects approximately 25% of the global population, is an urgent health issue leading to various metabolic comorbidities. Circular RNAs (circRNAs), covalently closed RNA molecules, are characterized by ubiquity, diversity, stability, and conservatism. Indeed, they participate in various biological processes via distinct mechanisms that could modify the natural history of NAFLD. In this review, we briefly introduce the biogenesis, characteristics, and biological functions of circRNAs. Furthermore, we summarize circRNAs expression profiles in NAFLD by intersecting seven sequencing data sets and describe the cellular roles of circRNAs and their potential advantages as biomarkers of NAFLD. In addition, we emphatically discuss the exosomal non-coding RNA sorting mechanisms and possible functions in recipient cells. Finally, we extensively discuss the potential application of targeting disease-related circRNAs and competing endogenous RNA networks through gain-of-function and loss-of-function approaches in targeted therapy of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Relevância Clínica , RNA/genética , RNA/metabolismo , Biomarcadores
11.
J Exp Clin Cancer Res ; 42(1): 311, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993901

RESUMO

BACKGROUND: Liver cancer stem cells (LCSCs) play an important role in hepatocellular carcinoma (HCC), but the mechanisms that link LCSCs to HCC metastasis remain largely unknown. This study aims to reveal the contributions of NRCAM to LCSC function and HCC metastasis, and further explore its mechanism in detail. METHODS: 117 HCC and 29 non-HCC patients with focal liver lesions were collected and analyzed to assess the association between NRCAM and HCC metastasis. Single-cell RNA sequencing (scRNA-seq) was used to explore the biological characteristics of cells with high NRCAM expression in metastatic HCC. The role and mechanism of NRCAM in LCSC dissemination and metastasis was explored in vitro and in vivo using MYC-driven LCSC organoids from murine liver cells. RESULTS: Serum NRCAM is associated with HCC metastasis and poor prognosis. A scRNA-seq analysis identified that NRCAM was highly expressed in LCSCs with MYC activation in metastatic HCC. Moreover, NRCAM facilitated LCSC migration and invasion, which was confirmed in MYC-driven LCSC organoids. The in vivo tumor allografts demonstrated that NRCAM mediated intra-hepatic/lung HCC metastasis by enhancing the ability of LCSCs to escape from tumors into the bloodstream. Nrcam expression inhibition in LCSCs blocked HCC metastasis. Mechanistically, NRCAM activated epithelial-mesenchymal transition (EMT) and metastasis-related matrix metalloproteinases (MMPs) through the MACF1 mediated ß-catenin signaling pathway in LCSCs. CONCLUSIONS: LCSCs typified by high NRCAM expression have a strong ability to invade and migrate, which is an important factor leading to HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Movimento Celular , Moléculas de Adesão Celular/metabolismo
12.
Inorg Chem ; 62(44): 18189-18197, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37883780

RESUMO

Recently, transition metal phosphides (TMPs) have been widely explored for the hydrogen evolution reaction (HER) due to their advantaged activity. Nevertheless, the OER performance of TMPs in an alkaline medium is still unsatisfactory. Therefore, interfacial engineering of TMPs to enhance the OER performance is highly desirable. Herein, a Co(OH)2 nanosheet coupled with a CoP sphere supported on nickel foam (NF) is developed by a simple two-step electrodeposition. The large surface area derived from stacked nanosheets and the electronic regulation induced by heterostructure can significantly enhance charge/mass transfer and expose more active sites, thus accelerating the kinetics of the reaction. In addition, the strong electronic interaction between CoP and Co(OH)2 is conducive to the generation of a high valence cobalt center; thus, the electrocatalytic performances toward HER and OER are remarkably improved. Impressively, the optimized CoP/Co(OH)2@NF heterostructure obtains an excellent HER and OER performance with low overpotentials of 76 and 266 mV at 10 mA cm-2, respectively, superior to the commercial Pt/C and RuO2. Moreover, the optimized CoP/Co(OH)2@NF can afford the lowest cell voltage of 1.58 V to achieve 10 mA cm-2 for alkaline overall water splitting and shows outstanding long-term stability.

13.
Clin Case Rep ; 11(9): e7912, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37700775

RESUMO

Key Clinical Message: We report a young man with isolated elevated AST. He had no other evidence of liver or other related diseases. All the tests and examination reports were negative. The final diagnosis of macro-AST was confirmed by PEG precipitation tests. Abstract: Elevated liver enzymes, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), may commonly indicate liver injury. However, macro-AST is generally a benign condition that may be considered as pathologic by clinicians. A young man with isolated elevated AST for more than 10 years who have taken extensive tests and examinations was diagnosed with macro-AST in our article. Thus, in patients with isolated AST-elevation, polyethylene glycol (PEG) precipitation test was recommended to test whether macro-AST could be diagnosed.

14.
Langmuir ; 39(35): 12467-12475, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37620251

RESUMO

In this study, visible-light-responsive carbon dots (CDs)/ZnIn2S4@MIL-88A (C/ZI@ML) photocatalysts were successfully prepared through in situ loading CDs and ZnIn2S4 nanosheets on MIL-88A(Fe) to form a ternary heterojunction. The detailed characterization indicated that the two-dimensional ZnIn2S4 nanosheets were uniformly coated on the surface of MIL-88A(Fe), and ZnIn2S4/MIL-88A(Fe) exhibited enhanced photocatalytic hydrogen production performance (1259.63 µmol h-1 g-1) compared to that of pristine MIL-88A(Fe) and ZnIn2S4 under visible light illumination. After introduction of CDs into ZnIn2S4/MIL-88A(Fe), the C/ZI@ML catalyst remarkably enhanced the photocatalytic activity and the hydrogen evolution rate of 1C/ZI@ML was up to 3609.23 µmol g-1 h-1. The photoinduced charge carriers of C/ZI@ML can be efficiently separated and migrated because of the close contacted interface, synergistic effect, and suitable band structure. In combination with photoelectrochemical experiments and electron paramagnetic resonance spectra, a possible photocatalytic mechanism over C/ZI@ML was proposed. This work demonstrated a facile preparation method for fabricating efficient visible-light-driven heterojunction photocatalysts.

15.
Front Endocrinol (Lausanne) ; 14: 1196831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534206

RESUMO

Background: Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that affects approximately one-quarter of the global population and is becoming increasingly prevalent worldwide. The lack of current noninvasive tools and efficient treatment is recognized as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) are nanoscale vesicles released by various cells and deliver bioactive molecules to target cells, thereby mediating various processes, including the development of NAFLD. Scope of review: There is still a long way to actualize the application of EVs in NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD and highlight their prospects for clinical application as a novel noninvasive diagnostic tool as well as a promising therapy for NAFLD, owing to their unique physiochemical characteristics. We summarize the literatures on the mechanisms by which EVs act as mediators of intercellular communication by regulating metabolism, insulin resistance, inflammation, immune response, intestinal microecology, and fibrosis in NAFLD. We also discuss future challenges that must be resolved to improve the therapeutic potential of EVs. Major conclusions: The levels and contents of EVs change dynamically at different stages of diseases and this phenomenon may be exploited for establishing sensitive stage-specific markers. EVs also have high application potential as drug delivery systems with low immunogenicity and high biocompatibility and can be easily engineered. Research on the mechanisms and clinical applications of EVs in NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and treatment is expected to grow with technological progress.


Assuntos
Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Comunicação Celular , Sistemas de Liberação de Medicamentos
16.
Inorg Chem ; 62(31): 12590-12599, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37480341

RESUMO

In this paper, Pr0.7Sr0.3Co1-xRuxO3 perovskite oxides were synthesized by the sol-gel method as bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotentials of PSCR0.05 against HER and OER at 10 mA cm-2 were 319 and 321 mV in alkaline medium, respectively. The Tafel slopes of HER and OER were 87.32 and 118.1 mV/dec, respectively. PSCR0.05 showed the largest electrochemical active area, the smallest charge transfer resistance, and excellent long-term durability. Meanwhile, the PSCR0.05 electrocatalyst was applied for overall water splitting and its cell voltage was maintained at 1.77 V at 10 mA cm-2. The super-exchange interaction between adjacent RuO6-CoO6 octahedra in perovskite made of PSCR0.05 contains sufficient active sites (such as Co2+/Co3+, Ru3+/Ru4+, and O22-/O-). The increase of surface oxygen vacancy and active site is the main reason for the improvement of difunctional catalyst performance. In this work, the electrocatalytic performance of perovskite-type oxides was further optimized by the method of A- and B-site cationic doping regulation, which provides a new idea for perovskite-type bifunctional electrocatalysts.

17.
Hortic Res ; 10(6): uhad094, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37350799

RESUMO

Studies have shown that the m6A reader primarily affects genes expression by participating in the regulation of mRNA localization, splicing, degradation, translation, and other metabolic processes. Previously, we discovered that the apple (Malus domestica) m6A reader MhYTP2 bound with and destabilized m6A-modified MdMLO19 mRNA. In addition, it enhanced the translation efficiency of m6A-modified mRNA of MdGDH1L, encoding a glutamate dehydrogenase, which confers resistance to powdery mildew. In this study, we report the function of MhYTP2 in the regulation of resistance to low nitrogen (N). The overexpression of MhYTP2 enhances the resistance of apple to low N. We show that MhYTP2 binds with and stabilizes the mRNAs of MdALN, which participates in the allantoin catabolic process and cellular response to N starvation in apple; MdPIDL, which participates in root hair elongation; MdTTG1, which is involved in the differentiation process of trichomes; and MdATG8A, which is a core participant in the regulation of autophagy. In addition, MhYTP2 accelerates the degradation of MdRHD3 mRNA, which regulates root development. RNA immunoprecipitation-seq and electrophoretic mobility shift assays show that the mRNAs of MdALN, MdATG8A, MdPIDL, MdTTG1, and MdRHD3 are the direct targets of MhYTP2. Overexpressing or knocking down the above genes in MhYTP2 overexpressing plants dismisses the function of MhYTP2 under low N, suggesting the role of MhYTP2 is dependent on those genes. Together, these results demonstrate that MhYTP2 enhances the resistance of apple to N deficiency by affecting the stability of the bound mRNAs.

18.
Mol Plant Pathol ; 24(10): 1287-1299, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366340

RESUMO

Glomerella leaf spot (GLS), caused by the fungal pathogen Colletotrichum fructicola, significantly threatens apple production. Some resistances to plant disease are mediated by the accumulation of nucleotide-binding site and leucine-rich repeat (NBS-LRR) proteins that are encoded by a major class of plant disease resistance genes (R genes). However, the R genes that confer resistance to GLS in apple remain largely unclear. Malus hupehensis YT521-B homology domain-containing protein 2 (MhYTP2) was identified as an N6 -methyladenosine RNA methylation (m6 A) modified RNA reader in our previous study. However, whether MhYTP2 binds to mRNAs without m6 A RNA modifications remains unknown. In this study, we discovered that MhYTP2 exerts both m6 A-dependent and -independent functions by analysing previously obtained RNA immunoprecipitation sequencing results. The overexpression of MhYTP2 significantly reduced the resistance of apple to GLS and down-regulated the transcript levels of some R genes whose transcripts do not contain m6 A modifications. Further analysis indicated that MhYTP2 binds to and reduces the stability of MdRGA2L mRNA. MdRGA2L positively regulates resistance to GLS by activating salicylic acid signalling. Our findings revealed that MhYTP2 plays an essential role in the regulation of resistance to GLS and identified a promising R gene, MdRGA2L, for use in developing apple cultivars with GLS resistance.


Assuntos
Malus , Phyllachorales , Phyllachorales/genética , Phyllachorales/metabolismo , Malus/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequência de Bases , Transdução de Sinais , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Plant J ; 115(1): 236-252, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37006197

RESUMO

Cold is one of the main abiotic stresses in temperate fruit crops, affecting the yield and fruit quality of apple in China and European countries. The plant receptor-like kinase FERONIA is widely reported to be involved in abiotic stresses. However, its function in apple cold resistance remains unknown. Modification of cell wall components and accumulation of soluble sugars and amino acids are important strategies by which plants cope with cold. In this study, expression of the apple FERONIA receptor-like kinase gene MdMRLK2 was rapidly induced by cold. Apple plants overexpressing MdMRLK2 (35S:MdMRLK2) showed enhanced cold resistance relative to the wild type. Under cold conditions, 35S:MdMRLK2 apple plants had higher amounts of water insoluble pectin, lignin, cellulose, and hemicellulose, which may have resulted from reduced activities of polygalacturonase, pectinate lyase, pectinesterase, and cellulase. More soluble sugars and free amino acids and less photosystem damage were also observed in 35S:MdMRLK2 apple plants. Intriguingly, MdMRLK2 interacted with the transcription factor MdMYBPA1 and promoted its binding to MdANS and MdUFGT promoters, leading to more anthocyanin biosynthesis, particularly under cold conditions. These findings complemented the function of apple FERONIA MdMRLK2 responding to cold resistance.


Assuntos
Malus , Malus/metabolismo , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , China , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
20.
Plant Physiol ; 192(3): 1768-1784, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37002821

RESUMO

Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.


Assuntos
Secas , Frutas , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA