RESUMO
Efficient delivery of therapeutic proteins and vaccine antigens to intracellular targets is challenging due to generally poor cell membrane permeation and endolysosomal entrapment causing degradation. Herein, these challenges are addressed by developing an oxygen-tolerant photoinitiated polymerization-induced self-assembly (Photo-PISA) process, allowing for the microliter-scale (10 µL) synthesis of protein-loaded polymersomes directly in 1536-well plates. High-resolution techniques capable of analysis at a single particle level are employed to analyze protein encapsulation and release mechanisms. Using confocal microscopy and super-resolution stochastic optical reconstruction microscopy (STORM) imaging, their ability to deliver proteins into the cytosol following endosomal escape is subsequently visualized. Lastly, the adaptability of these polymersomes is exploited to encapsulate and deliver a prototype vaccine antigen, demonstrating its ability to activate antigen-presenting cells and support antigen cross-presentation for applications in subunit vaccines and cancer immunotherapy. This combination of ultralow volume synthesis and efficient intracellular delivery holds significant promise for unlocking the high throughput screening of a broad range of otherwise cost-prohibitive or early-stage therapeutic protein and vaccine antigen candidates that can be difficult to obtain in large quantities. The versatility of this platform for rapid screening of intracellular protein delivery can result in significant advancements across the fields of nanomedicine and biomedical engineering.
RESUMO
Wafer-scale aligned carbon nanotubes (A-CNTs) are promising candidate semiconductors for building high-performance complementary metal-oxide-semiconductor (CMOS) transistors for future integrated circuits (ICs). A-CNT-based p-type field-effect transistors (P-FETs) have demonstrated excellent performance and scalability down to sub-10 nm nodes. However, the development of A-CNT n-type FETs (N-FETs) lags far behind, in regard to their electronic performance and device scaling. In this work, we fabricated top-gated N-FETs based on A-CNTs with a scandium (Sc)-contacted source and drain. High-performance A-CNT N-FETs were demonstrated with record on-state current (Ion) exceeding 1 mA/µm and peak transconductance (gm) of 0.4 mS/µm. Interestingly, the A-CNT N-FETs exhibited abnormal scaling behavior owing to the lateral oxidation of low-work function source/drain contacts, leading to formidable challenges to scale both the gate length (Lg) and the contact length (Lc) at the same time. Understanding of the abnormal scaling behavior contributes to seeking solutions for high-performance A-CNT N-FETs, and it paves the way for future CNT CMOS digital IC technology.
RESUMO
Annual net ecosystem productivity (NEP), the amount of net carbon sequestration during a year, serves as the basis of terrestrial carbon sink. Quantifying the spatial variations of NEP and its trend would enhance our understandings on the response and adaption of ecosystems to environmental change, which also serves for the regional carbon management targeting at carbon neutrality. Based on process-based model and data-driven model simulating NEP, we selected the optimal simulating NEP mostly representing NEP spatial variations with multiple site eddy covariance measurements to develop the spatial downscaling method and generate high resolution NEP data of China, which was used to examine the spatial variations of NEP and its trend and driving factors during 2000-2017. Compared with process-based model results, data-driven model simulating NEP could mostly represent the spatial variation of site measurements. The random forest regression based on climate, soil, and biological data combining with the simple scaling could successfully downscale NEP to a high spatial resolution. From 2000 to 2017, the total amount of NEP in China was (1.30±0.03) Pg C·a-1, showing a decreasing-increasing pattern with the inflection point in 2009. Chinese NEP decreased from southeast to northwest, showing a descending latitudinal distribution and an ascending longitudinal distribution, with the combined effects of climate and biotic factors. NEP trend decreased from east towards west, which was only accompanied with a slightly ascending longitudinal distribution, while photosynthetically active radiation and soil organic carbon content dominated the spatial variations of NEP trend. Therefore, the spatial patterns of generated NEP obviously differed from those of NEP trend, suggesting the obvious difference between the responses and adaptions of ecosystems to environmental changes.
Assuntos
Sequestro de Carbono , Ecossistema , China , Modelos Teóricos , Solo/química , Análise Espacial , Carbono/análise , Monitoramento Ambiental/métodos , População do Leste AsiáticoRESUMO
The objective of this research is to address the rut problems in asphalt pavements and to resist the permanent plastic deformation with the increasing heavy traffic loads. In this paper, a new type materials of high modulus asphalt was developed by incorporating styrene-butadiene-styrene (SBS) and zinc oxide nanoparticles (nano ZnO) with an (EME)-type high modulus modifier, guided by the synergistic effects and the preparation methods of High-speed shear. The basic road performance, mechanical response and thermal stability of the new high modulus asphalt materials were analysed through basic physical indicator tests, dynamic shear rheometer tests, thermogravimetric analysis (TGA), the time-temperature superposition principle, the Refutas model, and the Christensen-Andersen-Marasteanu model. The optimal results demonstrate that the optimal blend ratio of the developed asphalt is 12% EME/8% SBS/1.5% ZnO. Under this composition, the road performance indicator values of softening point, penetration and ductility of the modified asphalt met the standard requirements. The dynamic shear rheometer tests demonstrates that the inclusion of SBS and nano ZnO considerably enhanced the shear resistance and recovery deformation capacity of EME, effectively improving the high-temperature deformation resistance of asphalt. Furthermore,the Refutas and the Christensen-Andersen-Marasteanu model fitting results showed that adding SBS and nano ZnO considerably improved the temperature sensitivity of the EME types high modulus modified asphalt and exhibiting low frequency sensitivity. Compared to PR Module-type high modulus modifier(PRM),TGA reveals that the maximum thermal weight loss of EME-SBS-ZnO decreased by 3.5441%, indicating better thermal stability and the major character of SBS,EME and asphalt is physical reaction. Moreover, EME-nano ZnO-SBS high modulus asphalt at 64 °C shows Jnr-diff = 9.5% and passes the "E" extreme traffic grade. Additionally, its cost is 4.67% lower than that of the PRM high modulus modified asphalt, presenting considerable economic benefits.
RESUMO
BACKGROUND: Inflammation is a potential mechanism underlying the development of white matter lesions (WMLs) and cerebral atrophy. We aimed to investigate the relationship of fibrinogen levels with WMLs and cerebral atrophy in patients with acute ischemic stroke (AIS). METHODS: A total of 701 AIS patients were enrolled. Participants were divided into four groups according to the quartiles of fibrinogen levels: Q1 < 2.58 g/L, Q2: 2.58-3.12 g/L, Q3: 3.12-3.67 g/L, Q4: ≥ 3.67 g/L. White matter hyperintensity (WMH), periventricular hyperintensity (PVH) and deep white matter hyperintensity (DWMH) were defined according to the Fazekas scale. Cerebral atrophy was defined according to global cortical atrophy scores. Univariate and multivariate logistic regression were used to explore the relationship of fibrinogen levels and WMHs, PVH, DWMH and cerebral atrophy. RESULTS: Among 701 AIS patients, 498 (71.0 %), 425 (60.6 %), 442 (63.1 %), and 560 (79.9 %) had WMHs, PVH, DWMH and cerebral atrophy, respectively. After adjustment for potential covariates, the highest fibrinogen quartiles were significantly associated with increased risk of WMHs (odds ratio [OR] 1.97, 95 % confidence intervals [CI] 1.10-3.50), PVH (OR 1.85, 95 % CI 1.08-3.16) and cerebral atrophy (OR 2.53, 95 % CI 1.19-5.40) but not DWMH (OR 1.37 95 % CI 0.81-2.31) compared with the lowest fibrinogen quartile. Moreover, the association between elevated fibrinogen levels and the risk of WMLs and cerebral atrophy remained significant as continuous variables. CONCLUSIONS: Increased baseline fibrinogen levels were independently associated with WMHs, PVH and cerebral atrophy in patients with ischemic stroke. Fibrinogen could be the potential blood biomarker of WMLs and cerebral atrophy.
Assuntos
Atrofia , Biomarcadores , Fibrinogênio , AVC Isquêmico , Leucoencefalopatias , Humanos , Fibrinogênio/análise , Fibrinogênio/metabolismo , Masculino , Feminino , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , AVC Isquêmico/etiologia , Idoso , Pessoa de Meia-Idade , Biomarcadores/sangue , Fatores de Risco , Leucoencefalopatias/sangue , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/etiologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Medição de Risco , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Estudos Transversais , Prognóstico , Idoso de 80 Anos ou maisRESUMO
BACKGROUND: N-Glycosylation is one of the most important post-translational modifications in proteins. As the N-glycan profiles in biological samples are diverse and change according to the pathological condition, various profiling methods have been developed, such as liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry. However, conventional analytical methods have limitations in sensitivity and/or resolution, hindering the discovery of minor but specific N-glycans that are important both in the basic glycobiology research and in the medical application as biomarkers. Therefore, a highly sensitive and high-resolution N-glycan profiling method is required. RESULTS: In this study, we developed a novel two-dimensional (2D) separation system, which couples hydrophilic interaction liquid chromatography (HILIC) with capillary gel electrophoresis (CGE) via large-volume dual preconcentration by isotachophoresis and stacking (LDIS). Owing to the efficient preconcentration efficiency of LDIS, limit of detection reached 12 pM (60 amol, S/N = 3) with good calibration curve linearity (R2 > 0.999) in the 2D analysis of maltoheptaose. Finally, 2D profiling of N-glycans obtained from standard glycoproteins and cell lysates were demonstrated. High-resolution 2D profiles were successfully obtained by data alignment using triple internal standards. N-glycans were well distributed on the HILIC/CGE 2D plane based on the glycan size, number of sialic acids, linkage type, and so on. As a result, specific minor glycans were successfully identified in HepG2 and HeLa cell lysates. SIGNIFICANCE AND NOVELTY: In conclusion, the HILIC/CGE 2D analysis method showed sufficient sensitivity and resolution for identifying minor but specific N-glycans from complicated cellular samples, indicating the potential as a next-generation N-glycomics tool. Our novel approach for coupling LC and CE can also dramatically improve the sensitivity in other separation modes, which can be a new standard of 2D bioanalysis applicable not only to glycans, but also to other diverse biomolecules such as metabolites, proteins, and nucleic acids.
Assuntos
Eletroforese Capilar , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos , Polissacarídeos/análise , Polissacarídeos/química , Eletroforese Capilar/métodos , Humanos , Cromatografia Líquida/métodosRESUMO
INTRODUCTION: The association between earlobe crease (ELC) and cerebral small vessel disease, including white matter hyperintensities (WMHs) and brain atrophy, is unclear, especially in the setting of acute ischemic stroke (AIS). Here, we aimed to investigate the association between ELC and WMHs as well as brain atrophy among AIS patients. METHODS: A total of 730 AIS patients from China were enrolled. Patients were divided into groups without and with ELC, unilateral and bilateral ELC according to pictures of bilateral ears. Logistic regression models were employed to assess the impact of ELC, bilateral ELC on WMHs, periventricular hyperintensities (PVHs), deep white matter hyperintensities (DWMHs), and brain atrophy, as measured by the Fazekas scale and global cortical atrophy scale, in brain magnetic resonance imaging. RESULTS: There were 520 (71.2%) AIS patients with WMHs, 445 (61.0%) with PVH, 462 (63.3%) with DWMH, and 586 (80.3%) with brain atrophy. Compared to those without ELC, patients with ELC were significantly associated with an increased risk of PVH (odds ratio [OR] 1.79; 95% confidence interval [CI], 1.15-2.77) and brain atrophy (OR: 6.18; 95% CI: 3.60-10.63) but not WMHs and DWMH. The presence of bilateral ELC significantly increased the odds of WMHs (OR: 1.60; 95% CI: 1.00-2.56), PVH (OR: 1.87; 95% CI: 1.18-2.96), and brain atrophy (OR: 8.50; 95% CI: 4.62-15.66) when compared to individuals without ELC. Furthermore, we discovered that the association between bilateral ELC and WMHs, PVH, and DWMH was significant only among individuals aged ≤68 (median age) years (all p trend ≤0.041). However, this association was not observed in patients older than 68 years. CONCLUSIONS: In Chinese AIS patients, the presence of the visible aging sign, ELC, especially bilateral ELC, showed independent associations with both WMHs and brain atrophy, particularly among those younger than 68 years old.
RESUMO
Background: Epididymal cysts (ECs) are uncommon in the pediatric population. The objective of this study was to evaluate the frequency, clinical characteristics, and management strategies of ECs in children. Methods: We performed a retrospective review of pediatric scrotal ultrasounds between January 2014 and August 2022 to identify children with ECs. Results: One hundred and forty-three children boys were found to have ECs, with 95 being pre-pubertal and 48 post-pubertal. The age of the patients ranged from 1 day to 18 years, with a mean age of 10.64 ± 4.55 years. The size of the cysts varied from 2â mm to 35â mm. The most common comorbidities observed were hydrocele, testicular microlithiasis and varicocele. The majority of ECs were detected through routine physical examination. Conservative management was employed for all patients, except for one who required surgical excision. Resolution of ECs occurred in 12 patients, while a reduction in cyst size was observed in 6 cases. Conversely, 2 patients experienced an increase in cyst size, and 6 patients exhibited an increase in cyst number during the follow-up period. Conclusion: Conservative management is the preferred approach for the majority of cases, with surgical intervention reserved for specific instances.
RESUMO
Euglena gracilis (E. gracilis), pivotal in the study of photosynthesis, endosymbiosis, and chloroplast development, is also an industrial microalga for paramylon production. Despite its importance, E. gracilis genome exploration faces challenges due to its intricate nature. In this study, we achieved a chromosome-level de novo assembly (2.37 Gb) using Illumina, PacBio, Bionano, and Hi-C data. The assembly exhibited a contig N50 of 619 Kb and scaffold N50 of 1.12 Mb, indicating superior continuity. Approximately 99.83% of the genome was anchored to 46 chromosomes, revealing structural insights. Repetitive elements constituted 58.84% of the sequences. Functional annotations were assigned to 39,362 proteins, enhancing interpretative power. BUSCO analysis confirmed assembly completeness at 80.39%. This first high-quality E. gracilis genome offers insights for genetics and genomics studies, overcoming previous limitations. The impact extends to academic and industrial research, providing a foundational resource.
Assuntos
Euglena gracilis , Euglena gracilis/genética , Cromossomos , Microalgas/genética , Anotação de Sequência Molecular , GlucanosRESUMO
OBJECTIVES: To explore the value of preoperative magnetic resonance imaging (MRI) characterization of intracranial solitary fibrous tumors (ISFT) and to evaluate the effectiveness of preoperative MRI features in predicting pathological grading. MATERIALS AND METHODS: This retrospective analysis comprised the clinical and preoperative MRI characterization of 55 patients with ISFT in our hospital, including 27 grade II cases and 28 grade III cases confirmed by postoperative pathology. Variables included age, sex, tumor location, cross-midline status, signal characteristics of T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), T2-fluid-attenuated inversion recovery (T2-FLAIR), and diffusionweighted imaging (DWI), peritumoral edema, intralesional hemorrhage, focal necrosis/cystic degeneration, tumor empty vessel, maximum tumor diameter, maximum, minimum, and average values of apparent diffusion coefficient (ADCmax, ADCmin, and ADCmean), tumors enhancement mode, meningeal tail sign, skull invasion, cerebral parenchymal invasion, and venous sinus involvement. The independent samples t test or Mann-Whitney U test was performed to compare continuous data between the two groups, and the Pearson chi-squared test or Fisher's exact test was used to compare categorical data. In addition, bivariate logistic regression was performed to construct a comprehensive model, and receiver operating characteristic (ROC) curves were generated to calculate the areas under the curve (AUCs), thereby determining the value of each parameter in the differential diagnosis of grades II and III ISFT. RESULTS: The mean age at onset was similar between patients with grades II and III ISFT (46.77 ± 14.66 years and 45.82 ± 12.07 years, respectively). The proportions of men among patients with grades II and III ISFT were slightly higher than those of female patients (male/female: 1.25 [15/12] and 1.33 [16/12], respectively). There were significant differences between grades II and III ISFT in the T2-FLAIR and DWI signal characteristics, maximum, minimum, and average values of the apparent diffusion coefficient (ADCmax, ADCmin, and ADCmean), tumor location, and skull invasion (P = 0.001, P = 0.018, P = 0.000, P = 0.000, P = 0.000, P = 0.010, and P = 0.032, respectively). However, no significant differences were noted between grades II and III ISFT in age, sex, cross-midline status, T1WI and T2WI signal characteristics, peritumoral edema, intralesional hemorrhage, focal necrosis/cystic degeneration, tumor empty vessel shadow, enhancement mode, meningeal tail sign, maximum tumor diameter, brain parenchyma invasion, or venous sinus involvement (all P > 0.05). Moreover, binary logistic regression analysis showed that the model accuracy was 89.1% when ADCmin was included in the regression equation. Moreover, ROC curve analysis showed that the AUC of ADCmin was 0.805 (0.688, 0.922), sensitivity was 74.1%, specificity was 75.0%, and the cutoff value was 672 mm2/s. CONCLUSIONS: Grade III ISFT patients displayed more mixed T2-FLAIR signal characteristics and DWI signal characteristics than grade II patients, as shown by higher skull invasion and tumor mass collapse midline distribution and lower ADCmax, ADCmean, and ADCmin values. The ADCmin value was significant in the preoperative assignment of grades II and III ISFT, thereby contributing to enhanced accuracy in the imaging grading diagnosis of the disease.
Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Gradação de Tumores/métodos , Idoso , Adulto Jovem , Tumores Fibrosos Solitários/diagnóstico por imagem , Tumores Fibrosos Solitários/patologia , Adolescente , Imagem de Difusão por Ressonância Magnética/métodos , Período Pré-Operatório , Cuidados Pré-Operatórios/métodosRESUMO
How to select suitable pavement materials for asphalt pavements according to the functional requirements of layers is still the focus of research by scholars in various countries. However, their effectiveness in combating high-temperature rutting and fatigue cracking in middle and lower layers is limited. To address this issue, a study optimized the incorporation of basalt fibers in different layers to improve road performance based on design specifications. Nine asphalt pavement structures with varying amounts of basalt fibers were assessed using an orthogonal test method. The optimal structure was determined considering factors such as fatigue life and overloading using the finite element method for modeling. Results showed that fiber dosage had a minimal impact on road surface bending subsidence and the location of tensile strain in the lower layer. Shear stresses were concentrated mainly at the outer edges of loads. Optimal dosages of basalt fiber were determined for different layers: 0.3% for the upper layer, 0.1% for the middle layer, and 0.3% for the lower layer. The optimal structure consists of a strong base with a thin-surfaced semi-rigid base layer, with 0.3% for the upper layer and 0.1% for the middle layer. This study provided valuable insights into designing basalt fiber asphalt pavement structures.
Assuntos
Materiais de Construção , Hidrocarbonetos , Hidrocarbonetos/química , Teste de Materiais , Resistência à Tração , Estresse Mecânico , Propriedades de Superfície , SilicatosRESUMO
Pummelo (Citrus grandis L. Osbeck) exhibits S-RNase-based self-incompatibility (SI), during which S-RNase cytotoxicity inhibits pollen tubes in an S-haplotype-specific manner. The entry of S-RNase into self-pollen tubes triggers a series of reactions. However, these reactions are still poorly understood in pummelo. In the present study, we used S-RNases as baits to screen a pummelo pollen cDNA library and characterized a myo-inositol oxygenase (CgMIOX3) that physically interacts with S-RNases. CgMIOX3 is highly expressed in pummelo pollen tubes, and its downregulation leads to a reduction in pollen tube growth. Upon entering pollen tubes, S-RNases increase the expression of CgMIOX3 and enhance its activity by directly binding to it in an S-haplotype-independent manner. CgMIOX3 improves pollen tube growth under oxidative stress through ascorbic acid (AsA) accumulation and increases the length of self-pollen tubes. Furthermore, over-expression of CgMIOX3 increases the relative length of self-pollen tubes growing in the style of petunia (Petunia hybrida). This study provides intriguing insights into the pumelo SI system, revealing a regulatory mechanism mediated by CgMIOX3 that plays an important role in the resistance of pollen tubes to S-RNase cytotoxicity.
Assuntos
Citrus , Regulação da Expressão Gênica de Plantas , Inositol Oxigenase , Proteínas de Plantas , Tubo Polínico , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citrus/genética , Citrus/fisiologia , Citrus/efeitos dos fármacos , Inositol Oxigenase/genética , Inositol Oxigenase/metabolismo , Ribonucleases/metabolismo , Ribonucleases/genética , Autoincompatibilidade em Angiospermas/genética , Estresse Oxidativo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologiaRESUMO
Robotic nanomanipulation emerges as a cutting-edge technique pivotal for in situ nanofabrication, advanced sensing, and comprehensive material characterization. In this study, we develop an optical robotic platform (ORP) for the dynamic manipulation of colloidal nanoparticles (NPs). The ORP incorporates a human-in-the-loop control mechanism enhanced by real-time visual feedback. This feature enables the generation of custom optical landscapes with adjustable intensity and phase configurations. Based on the ORP, we achieve the parallel and reconfigurable manipulation of multiple NPs. Through the application of spatiotemporal phase gradient-reversals, our platform demonstrates capabilities in trapping, binding, rotating, and transporting NPs across custom trajectories. This presents a previously unidentified paradigm in the realm of in situ nanomanipulation. Additionally, the ORP facilities a "capture-and-print" assembly process, utilizing a strategic interplay of phase and intensity gradients. This process operates under a constant laser power setting, streamlining the assembly of NPs into any targeted configuration. With its precise positioning and manipulation capabilities, underpinned by the spatiotemporal modulation of optical gradients, the ORP will facilitate the development of colloid-based sensors and on-demand fabrication of nanodevices.
RESUMO
The glycomic analysis holds significant appeal due to the diverse roles that glycans and glycoconjugates play, acting as modulators and mediators in cellular interactions, cell/organism structure, drugs, energy sources, glyconanomaterials, and more. The glycomic analysis relies on liquid-phase separation technologies for molecular purification, separation, and identification. As a miniaturized form of liquid-phase separation technology, microscale separation technologies offer various advantages such as environmental friendliness, high resolution, sensitivity, fast speed, and integration capabilities. For glycan analysis, microscale separation technologies are continuously evolving to address the increasing challenges in their unique manners. This review discusses the fundamentals and applications of microscale separation technologies for glycomic analysis. It covers liquid-phase separation technologies operating at scales generally less than 100 µm, including capillary electrophoresis, nanoflow liquid chromatography, and microchip electrophoresis. We will provide a brief overview of glycomic analysis and describe new strategies in microscale separation and their applications in glycan analysis from 2014 to 2023.
Assuntos
Eletroforese Capilar , Glicômica , Polissacarídeos , Glicômica/métodos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/análise , Humanos , Cromatografia Líquida , Eletroforese em Microchip/métodosRESUMO
As self-incompatibility is a major issue in pummelo breeding and production, its mechanism in citrus was analyzed to improve breeding efficiency and reduce production costs. Rutaceae belongs to S-RNase type of gametophytic self-incompatibility. While the function of S-RNase/SLF and the mechanism of self-incompatibility have been studied extensively, the transcriptional regulation of S-RNase has been less studied. We performed transcriptome sequencing with the styles of 'Shatian' pummelo on the day of anthesis and 1-5 days before anthesis, and found that the transcript level of S-RNase gradually decreased with flower development. By analyzing differentially expressed genes and correlation with the expression trend of S-RNase, we identified a candidate gene, CgHSFB1, and utilized biochemical experiments such as yeast one-hybrid assay, electrophoretic mobility shift assay and dual-luciferase assay, as well as transient transformation of citrus calli and Citrus microcarpa and demonstrated that CgHSFB1 could directly bind to the S1-RNase promoter and repress the expression of S1-RNase, which is involved in the pummelo self-incompatibility response. In contrast, CgHSFB1 did not bind to the promoter of S2-RNase, and there was specificity in the regulation of S-RNase.
Assuntos
Citrus , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Ribonucleases , Autoincompatibilidade em Angiospermas , Citrus/genética , Citrus/fisiologia , Citrus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Autoincompatibilidade em Angiospermas/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Regiões Promotoras Genéticas/genética , Transcriptoma , Perfilação da Expressão GênicaRESUMO
Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.
Assuntos
Carbocianinas , Mitocôndrias , Recidiva Local de Neoplasia , Terapia Fototérmica , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Terapia Fototérmica/métodos , Humanos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Carbocianinas/química , Imagem Óptica/métodos , Camundongos , Cirurgia Assistida por Computador/métodos , Corantes Fluorescentes/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Raios Infravermelhos , Verde de Indocianina/química , Verde de Indocianina/uso terapêutico , Verde de Indocianina/farmacologiaRESUMO
INTRODUCTION: Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system and accounts for more than 90 % of all renal tumors. Resistance to targeted therapy has emerged as a pivotal factor that contributes to the progressive deterioration of patients with advanced RCC. Metabolic reprogramming is a hallmark of tumorigenesis and progression, with an increasing body of evidence indicating that abnormal lipid metabolism plays a crucial role in the advancement of renal clear cell carcinoma. OBJECTIVES: Clarify the precise mechanisms underlying abnormal lipid metabolism and drug resistance. METHODS: Bioinformatics screening and analyses were performed to identify hub gene. qRT-PCR, western blot, chromatin immunoprecipitation (ChIP) assays, and other biological methods were used to explore and verify related pathways. Various cell line models and animal models were used to perform biological functional experiments. RESULTS: In this study, we identified Mesoderm induction early response 2 (MIER2) as a novel biomarker for RCC, demonstrating its role in promoting malignancy and sunitinib resistance by influencing lipid metabolism in RCC. Mechanistically, MIER2 facilitated P53 deacetylation by binding to HDAC1. Acetylation modification augmented the DNA-binding stability and transcriptional function of P53, while deacetylation of P53 hindered the transcriptional process of PGC1A, leading to intracellular lipid accumulation in RCC. Furthermore, Trichostatin A (TSA), an inhibitor of HDAC1, was found to impede the MIER2/HDAC1/P53/PGC1A pathway, offering potential benefits for patients with sunitinib-resistant renal cell cancer. CONCLUSION: Our findings highlight MIER2 as a key player in anchoring HDAC1 and inhibiting PGC1A expression through the deacetylation of P53, thereby inducing lipid accumulation in RCC and promoting drug resistance. Lipid-rich RCC cells compensate for energy production and sustain their own growth in a glycolysis-independent manner, evading the cytotoxic effects of targeted drugs and ultimately culminating in the development of drug resistance.
RESUMO
Zero Valent Iron (ZVI), an ideal reductant treating persistent pollutants, is hampered by issues like corrosion, passivation, and suboptimal utilization. Recent advancements in nonmetallic modified ZVI (NM-ZVI) show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties. Despite its promise, a thorough synthesis of research advancements in this domain remains elusive. Here we review the innovative methodologies, regulatory principles, and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants: halogenated organic compounds and heavy metals. We start by evaluating different nonmetallic modification techniques, such as liquid-phase reduction, mechanical ball milling, and pyrolysis, and their respective advantages. The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity, electron selectivity, and electron utilization efficiency. This is achieved by optimizing the elemental compositions, content ratios, lattice constants, hydrophobicity, and conductivity. Furthermore, we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges. This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals, contributing to the broader discourse on green remediation technologies.
RESUMO
Mitoribosomes are essential for the production of biological energy. The Human Mitoribosomal Small Subunit unit (MRPS) family, responsible for encoding mitochondrial ribosomal small subunits, is actively engaged in protein synthesis within the mitochondria. Intriguingly, MRPS family genes appear to play a role in cancer. A multistep process was employed to establish a risk model associated with MRPS genes, aiming to delineate the immune and pharmacogenomic landscapes in clear cell renal cell carcinoma (ccRCC). MRPScores were computed for individual patients to assess their responsiveness to various treatment modalities and their susceptibility to different therapeutic targets and drugs. While MRPS family genes have been implicated in various cancers as oncogenes, our findings reveal a contrasting tumor suppressor role for MRPS genes in ccRCC. Utilizing an MRPS-related risk model, we observed its excellent prognostic capability in predicting survival outcomes for ccRCC patients. Remarkably, the subgroup with high MRPS-related scores (MRPScore) displayed poorer prognosis but exhibited a more robust response to immunotherapy. Through in silico screening of 2183 drug targets and 1646 compounds, we identified two targets (RRM2 and OPRD1) and eight agents (AZ960, carmustine, lasalocid, SGI-1776, AZD8055_1059, BPD.00008900_1998, MK.8776_2046, and XAV939_1268) with potential therapeutic implications for high-MRPScore patients. Our study represents the pioneering effort in proposing that molecular classification, diagnosis, and treatment strategies can be formulated based on MRPScores. Indeed, a high MRPScore profile appears to elevate the risk of tumor progression and mortality, potentially through its influence on immune regulation. This suggests that the MRPS-related risk model holds promise as a prognostic predictor and may offer novel insights into personalized therapeutic strategies.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Prognóstico , Ribossomos Mitocondriais/metabolismo , Regulação Neoplásica da Expressão Gênica , Farmacogenética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismoRESUMO
BACKGROUND: Acute ischemic stroke is a common neurological disease with a significant financial burden but lacks effective drugs. Hypoxia-inducible factor (HIF) and prolyl hydroxylases (PHDs) participate in the pathophysiological process of ischemia. However, whether FG4592, the first clinically approved PHDs inhibitor, can alleviate ischemic brain injury remains unclear. METHODS: The infarct volumes and behaviour tests were first analyzed in mice after ischemic stroke with systemic administration of FG4592. The knockdown of HIF-1α and pretreatments of HIF-1/2α inhibitors were then used to verify whether the neuroprotection of FG4592 is HIF-dependent. The targets predicting and molecular docking methods were applied to find other targets of FG4592. Molecular, cell biological and gene knockdown methods were finally conducted to explore the potential neuroprotective mechanisms of FG4592. RESULTS: We found that the systemic administration of FG4592 decreased infarct volume and improved neurological defects of mice after transient or permanent ischemia. Meanwhile, FG4592 also activated autophagy and inhibited apoptosis in peri-infarct tissue of mice brains. However, in vitro and in vivo results suggested that the neuroprotection of FG4592 was not classical HIF-dependent. 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) was found to be a novel target of FG4592 and regulated the Pro-62 hydroxylation in the small ribosomal protein s23 (Rps23) with the help of target predicting and molecular docking methods. Subsequently, the knockdown of OGFOD1 protected the cell against ischemia/reperfusion injury and activated unfolded protein response (UPR) and autophagy. Moreover, FG4592 was also found to activate UPR and autophagic flux in HIF-1α independent manner. Blocking UPR attenuated the neuroprotection, pro-autophagy effect and anti-apoptosis ability of FG4592. CONCLUSION: This study demonstrated that FG4592 could be a candidate drug for treating ischemic stroke. The neuroprotection of FG4592 might be mediated by inhibiting alternative target OGFOD1, which activated the UPR and autophagy and inhibited apoptosis after ischemic injury. The inhibition of OGFOD1 is a novel therapy for ischemic stroke.