Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol Immunol Infect ; 55(4): 598-610, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35650006

RESUMO

BACKGROUND: The purpose of this study was to examine the in vivo activity of rosmarinic acid (RA) - a phytochemical with antioxidant, anti-inflammatory, and antiviral properties - against influenza virus (IAV). An antibody-based kinase array and different in vitro functional assays were also applied to identify the mechanistic underpinnings by which RA may exert its anti-IAV activity. METHODS: We initially examined the potential efficacy of RA using an in vivo mouse model. A time-of-addition assay and an antibody-based kinase array were subsequently applied to investigate mechanism-of-action targets for RA. The hemagglutination inhibition assay, neuraminidase inhibition assay, and cellular entry assay were also performed. RESULTS: RA increased survival and prevented body weight loss in IAV-infected mice. In vitro experiments revealed that RA inhibited different IAV viruses - including oseltamivir-resistant strains. From a mechanistic point of view, RA downregulated the GSK3ß and Akt signaling pathways - which are known to facilitate IAV entry and replication into host cells. CONCLUSIONS: RA has promising preclinical efficacy against IAV, primarily by interfering with the GSK3ß and Akt signaling pathways.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Antivirais , Cinamatos , Depsídeos , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Oseltamivir , Proteínas Proto-Oncogênicas c-akt , Replicação Viral , Ácido Rosmarínico
2.
Emerg Microbes Infect ; 9(1): 1194-1205, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32397909

RESUMO

Enterovirus A71 (EV-A71), a positive-stranded RNA virus of the Picornaviridae family, may cause neurological complications or fatality in children. We examined specific factors responsible for this virulence using a chemical genetics approach. Known compounds from an anti-EV-A71 herbal medicine, Salvia miltiorrhiza (Danshen), were screened for anti-EV-A71. We identified a natural product, rosmarinic acid (RA), as a potential inhibitor of EV-A71 by cell-based antiviral assay and in vivo mouse model. Results also show that RA may affect the early stage of viral infection and may target viral particles directly, thereby interfering with virus-P-selectin glycoprotein ligand-1 (PSGL1) and virus-heparan sulfate interactions without abolishing the interaction between the virus and scavenger receptor B2 (SCARB2). Sequencing of the plaque-purified RA-resistant viruses revealed a N104K mutation in the five-fold axis of the structural protein VP1, which contains positively charged amino acids reportedly associated with virus-PSGL1 and virus-heparan sulfate interactions via electrostatic attraction. The plasmid-derived recombinant virus harbouring this mutation was confirmed to be refractory to RA inhibition. Receptor pull-down showed that this non-positively charged VP1-N104 is critical for virus binding to heparan sulfate. As the VP1-N104 residue is conserved among different EV-A71 strains, RA may be useful for inhibiting EV-A71 infection, even for emergent virus variants. Our study provides insight into the molecular mechanism of virus-host interactions and identifies a promising new class of inhibitors based on its antiviral activity and broad spectrum effects against a range of EV-A71.


Assuntos
Antivirais/administração & dosagem , Proteínas do Capsídeo/genética , Cinamatos/administração & dosagem , Depsídeos/administração & dosagem , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/tratamento farmacológico , Salvia miltiorrhiza/química , Animais , Antivirais/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/química , Linhagem Celular , Cinamatos/farmacologia , Depsídeos/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/virologia , Heparitina Sulfato/metabolismo , Humanos , Células Jurkat , Glicoproteínas de Membrana/metabolismo , Camundongos , Mutação , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Ligação Proteica/efeitos dos fármacos , Eletricidade Estática , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/química , Fatores de Virulência/genética , Ácido Rosmarínico
3.
J Antimicrob Chemother ; 71(7): 1922-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27098012

RESUMO

OBJECTIVES: Enterovirus 71 (EV-A71) is an important pathogen that can cause severe neurological symptoms and even death. Our aim was to identify potent anti-EV-A71 compounds and study their underlying mechanisms and in vivo activity. METHODS: We identified a potent imidazolidinone derivative (abbreviated to PR66) as an inhibitor of EV-A71 infection from the screening of compounds and subsequent structure-based modification. Time-course treatments and resistant virus selection of PR66 were employed to study the mode of mechanism of PR66. In vivo activity of PR66 was tested in the ICR strain of new-born mice challenged with EV-A71/4643/MP4. RESULTS: PR66 could impede the uncoating process during viral infection via interaction with capsid protein VP1, as shown by a resistant virus selection assay. Using site-directed mutagenesis, we confirmed that a change from valine to phenylalanine in the 179th amino acid residue of the cDNA-derived resistant virus resulted in resistance to PR66. PR66 increased the virion stability of WT viruses, but not the PR66-resistant mutant, in a particle stability thermal release assay. We further showed that PR66 had excellent anti-EV-A71 activity in an in vivo mouse model of disease, with a dose-dependent increase in survival rate and in protection against virus-induced hind-limb paralysis following oral or intraperitoneal administration. This was associated with reductions of viral titres in brain and muscle tissues. CONCLUSIONS: We demonstrated here for the first time that an imidazolidinone derivative (PR66) could protect against EV-A71-induced neurological symptoms in vivo by suppressing EV-A71 replication. This involved binding to and restricting viral uncoating.


Assuntos
Antivirais/metabolismo , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Enterovirus Humano A/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos ICR , Análise de Sobrevida
4.
Viruses ; 6(4): 1861-75, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24762393

RESUMO

Bai Shao (BS, the root of Paeonia lactiflora Pall.), a common Chinese herb in many recipes used to treat viral infection and liver diseases, is recognized for its ability to nourish menstruation, its Yin convergence, and as an antiperspirant. However, the mechanism and components for its antiviral function remain to be elucidated. In this study, an ethanolic extract of BS was further partitioned into aqueous and organic parts (EAex) for in vitro functional study and in vivo efficacy testing. EAex exhibited an IC50 of 0.016 ± 0.005 mg/mL against influenza virus A/WSN/33 (H1N1), with broad-spectrum inhibitory activity against different strains of human influenza A viruses, including clinical oseltamivir-resistant isolates and an H1N1pdm strain. The synthesis of both viral RNA and protein was profoundly inhibited when the cells were treated with EAex. A time-of-addition assay demonstrated that EAex exerted its antiviral activity at various stages of the virus replication cycle. We addressed its antiviral activity at virus entry and demonstrated that EAex inhibits viral hemagglutination and viral binding to and penetration into host cells. In vivo animal testing showed that 200 mg/kg/d of EAex offered significant protection against viral infection. We conclude that BS possesses antiviral activity and has the potential for development as an anti-influenza agent.


Assuntos
Antivirais/farmacologia , Medicina Herbária , Vírus da Influenza A/efeitos dos fármacos , Paeonia/química , Extratos Vegetais/farmacologia , Animais , Antivirais/administração & dosagem , Antivirais/isolamento & purificação , Modelos Animais de Doenças , Vírus da Influenza A/fisiologia , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Resultado do Tratamento , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA