Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957128

RESUMO

To move away from fossil fuels, the electrochemical reaction plays a critical role in renewable energy sources and devices. The anodic oxygen evolution reaction (OER) is always coupled with these reactions in devices but suffers from large energy barriers. Thus, it is important for developing efficient OER catalysts with low overpotential. On the other hand, there are large amounts of metals in electronic waste (E-waste), especially various transition metals that are promising alternatives for catalyzing OER. Hence, this work, which focuses on upcycling Class II BaTiO3 Multilayer Ceramic Capacitors, of which two trillion were produced in 2011 alone. We achieved this by first using a green solvent extraction method that combined the ionic liquid Aliquat® 336 and hydrochloride acid to recover a mixed solution of Ni, Fe and Cu cations, and then using such a solution to synthesize high potential catalysts NiFe hydroxide and NiCu hydroxide for OER. NiFe-hydroxide has been demonstrated to have faster OER kinetics than the NiCu-hydroxide and commercial c-RuO2. In addition, it showed promising results after the chronopotentiometry tests that outperform c-RuO2.

2.
Small ; 18(39): e2203126, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026538

RESUMO

Synthesis and coating of multi-metal oxides (MMOs) and alloys on conductive substrates are indispensable to electrochemical applications, yet demand multiple, resource-intensive, and time-consuming processes. Herein, an alternative approach to the synthesis and coating of alloys and MMOs by femtosecond laser direct writing (FsLDW) is reported. A solution-based precursor ink is deposited and dried on the substrate and illuminated by a femtosecond laser. During the illumination, dried precursor ink is transformed to MMO/alloys and is simultaneously bonded to the substrate. The formulation of the alloy and MMO precursor ink for laser processing is universally applicable to a large family of oxides and alloys. The process is conducted at room temperature and in an open atmosphere. To demonstrate, a large family of 57 MMOs and alloys are synthesized from a group of 13 elements. As a proof of concept, Ni0.24 Co0.23 Cu0.24 Fe0.15 Cr0.14 high entropy alloy synthesized on stainless-steel foil by FsLDW is used for the oxygen evolution reaction, which achieves a current density of 10 mA cm-2 at a significantly low overpotential of 213 mV. Further, FsLDW can also achieve microfabrication of alloys/MMO with feature sizes down to 20 µm.

3.
J Am Chem Soc ; 144(25): 11444-11455, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35723429

RESUMO

Aqueous aluminum metal batteries (AMBs) are regarded as one of the most sustainable energy storage systems among post-lithium-ion candidates, which is attributable to their highest theoretical volumetric capacity, inherent safe operation, and low cost. Yet, the development of aqueous AMBs is plagued by the incapable aluminum plating in an aqueous solution and severe parasitic reactions, which results in the limited discharge voltage, thus making the development of aqueous AMBs unsuccessful so far. Here, we demonstrate that amorphization is an effective strategy to tackle these critical issues of a metallic Al anode by shifting the reduction potential for Al deposition. The amorphous aluminum (a-Al) interfacial layer is triggered by an in situ lithium-ion alloying/dealloying process on a metallic Al substrate with low strength. Unveiled by experimental and theoretical investigations, the amorphous structure greatly lowers the Al nucleation energy barrier, which forces the Al deposition competitive to the electron-stealing hydrogen evolution reaction (HER). Simultaneously, the inhibited HER mitigates the passivation, promoting interfacial ion transfer kinetics and enabling steady aluminum plating/stripping for 800 h in the symmetric cell. The resultant multiple full cells using Al@a-Al anodes deliver approximately a 0.6 V increase in the discharge voltage plateau compared to that of bare Al-based cells, which far outperform all reported aqueous AMBs. In both symmetric cells and full cells, the excellent electrochemical performances are achieved in a noncorrosive, low-cost, and fluorine-free Al2(SO4)3 electrolyte, which is ecofriendly and can be easily adapted for sustainable large-scale applications. This work brings an intriguing picture of the design of metallic anodes for reversible and high-voltage AMBs.

4.
Nano Lett ; 22(9): 3832-3839, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451305

RESUMO

Enhancing activity and stability of iridium- (Ir-) based oxygen evolution reaction (OER) catalysts is of great significance in practice. Here, we report a vacancy-rich nickel hydroxide stabilized Ir single-atom catalyst (Ir1-Ni(OH)2), which achieves long-term OER stability over 260 h and much higher mass activity than commercial IrO2 in alkaline media. In situ X-ray absorption spectroscopy analysis certifies the obvious structure reconstruction of catalyst in OER. As a result, an active structure in which high-valence and peripheral oxygen ligands-rich Ir sites are confined onto the nickel oxyhydroxide surface is formed. In addition, the precise introduction of atomized Ir not only surmounts the large-range dissolution and agglomeration of Ir but also suppresses the dissolution of substrate in OER. Theoretical calculations further account for the activation of Ir single atoms and the promotion of oxygen generation by high-valence Ir, and they reveal that the deprotonation process of adsorbed OH is rate-determining.

5.
Adv Mater ; 34(20): e2110604, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35319113

RESUMO

Ruthenium (Ru)-based electrocatalysts as platinum (Pt) alternatives in catalyzing hydrogen evolution reaction (HER) are promising. However, achieving efficient reaction processes on Ru catalysts is still a challenge, especially in alkaline media. Here, the well-dispersed Ru nanoparticles with adjacent Ru single atoms on carbon substrate (Ru1,n -NC) is demonstrated to be a superb electrocatalyst for alkaline HER. The obtained Ru1,n -NC exhibits ultralow overpotential (14.8 mV) and high turnover frequency (1.25 H2  s-1 at -0.025 V vs reversible hydrogen electrode), much better than the commercial 40 wt.% Pt/C. The analyses reveal that Ru nanoparticles and single sites can promote each other to deliver electrons to the carbon substrate. Eventually, the electronic regulations bring accelerated water dissociation and reduced energy barriers of hydroxide/hydrogen desorption on adjacent Ru sites, then an optimized reaction kinetics for Ru1,n -NC is obtained to achieve superb hydrogen generation in alkaline media. This work provides a new insight into the catalyst design in simultaneous optimizations of the elementary steps to obtain ideal HER performance in alkaline media.

6.
Small ; 18(16): e2107885, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35261150

RESUMO

Exploring catalyst reconstruction under the electrochemical condition is critical to understanding the catalyst structure-activity relationship as well as to design effective electrocatalysts. Herein, a PbF2 nanocluster is synthesized and its self-reconstruction under the CO2 reduction condition is investigated. F- leaching, CO2 -saturated environment, and application of a cathodic potential induce self-reconstruction of PbF2 to Pb3 (CO3 )2 (OH)2 , which effectively catalyze the CO2 reduction to formate. The in situ formed Pb3 (CO3 )2 (OH)2 discloses >80% formate Faradaic efficiencies (FEs) across a broad range of potentials and achieves a maximum formate FE of ≈90.1% at -1.2 V versus reversible hydrogen electrode (RHE). Kinetic studies show that the CO2 reduction reaction (CO2 RR) on the Pb3 (CO3 )2 (OH)2 is rate-limited at the CO2 protonation step, in which proton is supplied by bicarbonate (HCO3 - ) in the electrolyte. To improve the CO2 RR kinetics, the Pb3 (CO3 )2 (OH)2 is further doped with Pd (4 wt%) to enhance its HCO3 - adsorption, which leads to accelerated protonation of CO2 . Therefore, the Pd-Pb3 (CO3 )2 (OH)2 (4 wt%) reveals higher formate FEs of >90% from -0.8 to -1.2 V versus RHE and reaches a maximum formate FE of 96.5% at -1.2 V versus RHE with a current density of ≈13 mA cm-2 .

7.
Angew Chem Int Ed Engl ; 60(50): 26233-26237, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34586693

RESUMO

With ever-increasing energy consumption and continuous rise in atmospheric CO2 concentration, electrochemical reduction of CO2 into chemicals/fuels is becoming a promising yet challenging solution. Sn-based materials are identified as attractive electrocatalysts for the CO2 reduction reaction (CO2 RR) to formate but suffer from insufficient selectivity and activity, especially at large cathodic current densities. Herein, we demonstrate that Cu-doped SnS2 nanoflowers can undergo in situ dynamic restructuring to generate catalytically active S-doped Cu/Sn alloy for highly selective electrochemical CO2 RR to formate over a wide potential window. Theoretical thermodynamic analysis of reaction energetics indicates that the optimal electronic structure of the Sn active site can be regulated by both S-doping and Cu-alloying to favor formate formation, while the CO and H2 pathways will be suppressed. Our findings provide a rational strategy for electronic modulation of metal active site(s) for the design of active and selective electrocatalysts towards CO2 RR.

8.
Sci Bull (Beijing) ; 66(6): 553-561, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654425

RESUMO

Broadly, the oxygen evolution reaction (OER) has been deeply understood as a significant part of energy conversion and storage. Nevertheless, the anions in the OER catalysts have been neglected for various reasons such as inactive sites, dissolution, and oxidation, amongst others. Herein, we applied a model catalyst s-Ni(OH)2 to track the anionic behavior in the catalyst during the electrochemical process to fill this gap. The advanced operando synchrotron radiation Fourier transform infrared (SR-FTIR) spectroscopy, synchrotron radiation photoelectron spectroscopy (SRPES) depth detection and differential X-ray absorption fine structure (Δ-XAFS) spectrum jointly point out that some oxidized sulfur species (SO42-) will self-optimize new Ni-S bonds during OER process. Such amazing anionic self-optimization (ASO) behavior has never been observed in the OER process. Subsequently, the optimization-derived component shows a significantly improved electrocatalytic performance (activity, stability, etc.) compared to reference catalyst Ni(OH)2. Theoretical calculation further suggests that the ASO process indeed derives a thermodynamically stable structure of the OER catalyst, and then gives its superb catalytic performance by optimizing the thermodynamic and kinetic processes in the OER, respectively. This work demonstrates the vital role of anions in the electrochemical process, which will open up new perspectives for understanding OER and provide some new ideas in related fields (especially catalysis and chemistry).

9.
ACS Nano ; 14(12): 17640-17651, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33316158

RESUMO

Highly active oxygen evolution reaction (OER) electrocatalysts are important to effectively transform renewable electricity to fuel and chemicals. In this work, we construct a series of multimetal oxide nanoplate OER electrocatalysts through successive cation exchange followed by electrochemical oxidation, whose electronic structure and diversified metal active sites can be engineered via the mutual synergy among multiple metal species. Among the examined multimetal oxide nanoplates, CoCeNiFeZnCuOx nanoplates exhibit the optimal adsorption energy of OER intermediates. Together with the high electrochemical active surface area, the CoCeNiFeZnCuOx nanoplates manage to deliver a small overpotential of 211 mV at an OER current density of 10 mA cm-2 (η10) with a Tafel slope as low as 21 mV dec-1 in 1 M KOH solution, superior to commercial IrO2 (339 mV at η10, Tafel slope of 55 mV dec-1), which can be stably operated at 10 mA cm-2 (at an overpotential of 211 mV) and 100 mA cm-2 (at an overpotential of 307 mV) for 100 h.

10.
Small ; 16(48): e2003914, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33169530

RESUMO

Direct water splitting over photocatalysts is a prospective strategy to convert solar energy into hydrogen energy. Nevertheless, because of the undesirable electron accumulation at the surface, the overall water-splitting efficiency is seriously restricted by the poor charge separation/transfer ability. Here, an all-organic donor-acceptor (D-A) system through crafting carbon rings units-conjugated tubular graphitic carbon nitride (C-TCN) is proposed. Through a range of characterizations and theoretical calculations, the incorporation of carbon rings units via continuous π-conjugated bond builds a D-A system, which can drive intramolecular charge transfer to realize highly efficient charge separation. More importantly, the tubular structure and the incorporated carbon rings units cause a significant downshift of the valence band, of which the potential is beneficial to the activation for O2 evolution. When serving as photocatalyst for overall water splitting, C-TCN displays considerable performance with H2 and O2 production rates of 204.6 and 100.8 µmol g-1 h-1 , respectively. The corresponding external quantum efficiency reaches 2.6% at 405 nm, and still remains 1.7% at 420 nm. This work demonstrates that the all-organic D-A system conceptualized from organic solar cell can offer promotional effect for overall water splitting by addressing the charge accumulation problem rooted in the hydrogen evolution reaction.

11.
Research (Wash D C) ; 2020: 5860712, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029589

RESUMO

Numerous experiments have demonstrated that the metal atom is the active center of monoatomic catalysts for hydrogen evolution reaction (HER), while the active sites of nonmetal doped atoms are often neglected. By combining theoretical prediction and experimental verification, we designed a unique ternary Ru-N4-P coordination structure constructed by monodispersed Ru atoms supported on N,P dual-doped graphene for highly efficient hydrogen evolution in acid solution. The density functional theory calculations indicate that the charge polarization will lead to the most charge accumulation at P atoms, which results in a distinct nonmetallic P active sites with the moderate H∗ adsorption energy. Notably, these P atoms mainly supply highly efficient catalytic sites with ultrasmall absorption energy of 0.007 eV. Correspondingly, the Ru-N4-P demonstrated outstanding HER performance not only in an acidic condition but also in alkaline environment. Notably, the performance of Ru-NPC catalyst at high current is even superior to the commercial Pt/C catalysts, whether in acidic or alkaline medium. Our in situ synchrotron radiation infrared spectra demonstrate that a P-Hads intermediate is continually emerging on the Ru-NPC catalyst, actively proving the nonmetallic P catalytically active site in HER that is very different with previously reported metallic sites.

12.
Nanoscale ; 12(15): 8432-8442, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32239051

RESUMO

The necessity of Earth-abundant low-cost catalysts with activity similar to noble metals such as platinum is indispensable in order to realize the production of hydrogen through electrolysis of water. Herein, we report a relatively low-cost NiAg0.4 3D porous nanocluster catalyst whose activity matches with that of the state-of-the-art Pt/C in 1 M KOH solution. The catalyst is designed on the principle of creating an interface between a metal having a positive Gibbs energy of hydrogen adsorption and a metal of negative Gibbs energy based on the volcano plot, to tune the Gibbs energy of hydrogen adsorption near zero for enhanced hydrogen evolution. The synthesized NiAg0.4 3D porous nanoclusters are comprised of nanoparticles of lateral dimension ∼50 nm forming a 3D porous network with pores of 10 nm-80 nm. A high-resolution transmission electron microscopy image reveals the epitaxial growth of Ag (200) on the Ni (111) plane leading to the creation of abundant interfaces between the Ni and Ag lattices. The catalyst needs a low overpotential of 40 mV@10 mA cm-2 with a Tafel slope of 39.1 mV dec-1 in 1 M KOH solution. Furthermore, the catalyst exhibits a high specific activity of 0.1 mA cm-2(ECSA) at an overpotential (η) of 45 mV which matches with the specific activity of Pt/C 20% wt. catalyst (0.1 mA cm-2@η = 26 mV). Density functional theory calculations reveal that the Ni-Ag interface furnishes a pathway with a reduced Gibbs energy of adsorption of -0.04 eV, thus promoting enhanced hydrogen evolution. In summary, this study reveals excellent HER activity at the Ni-Ag interface.

13.
Adv Mater ; 32(16): e2000966, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32134518

RESUMO

Controllably constructing nitrogen-modified divacancies (ND) in carbon substrates to immobilize atomic Fe species and unveiling the advantageous configuration is still challenging, but indispensable for attaining optimal Fe-N-C catalysts for the oxygen reduction reaction (ORR). Herein, a fundamental investigation of unfolding intrinsically superior edge-ND trapped atomic Fe motifs (e-ND-Fe) relative to an intact center model (c-ND-Fe) in ORR electrocatalysis is reported. Density functional theory calculations reveal that local electronic redistribution and bandgap shrinkage for e-ND-Fe endow it with a lower free-energy barrier toward direct four-electron ORR. Inspired by this, a series of atomic Fe catalysts with adjustable ND-Fe coordination are synthesized, which verify that ORR performance highly depends on the concentration of e-ND-Fe species. Remarkably, the best e-ND-Fe catalyst delivers a favorable kinetic current density and halfwave potential that can be comparable to benchmark Pt-C under acidic conditions. This work will guide to develop highly active atomic metal catalysts through rational defect engineering.

14.
Adv Mater ; 32(11): e1906972, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31984566

RESUMO

Developing efficient electrocatalysts for alkaline water electrolysis is central to substantial progress of alkaline hydrogen production. Herein, a Ni5 P4 electrocatalyst incorporating single-atom Ru (Ni5 P4 -Ru) is synthesized through the filling of Ru3+ species into the metal vacancies of nickel hydroxides and subsequent phosphorization treatment. Electron paramagnetic resonance spectroscopy, X-ray-based measurements, and electron microscopy observations confirm the strong interaction between the nickel-vacancy defect and Ru cation, resulting in more than 3.83 wt% single-atom Ru incorporation in the obtained Ni5 P4 -Ru. The Ni5 P4 -Ru as an alkaline hydrogen evolution reaction catalyst achieves low onset potential of 17 mV and an overpotential of 54 mV at a current density of 10 mA cm-2 together with a small Tafel slope of 52.0 mV decade-1 and long-term stability. Further spectroscopy analyses combined with density functional theory calculations reveal that the doped Ru sites can cause localized structure polarization, which brings the low energy barrier for water dissociation on Ru site and the optimized hydrogen adsorption free energy on the interstitial site, well rationalizing the experimental reactivity.

15.
ACS Nano ; 14(1): 595-602, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31891248

RESUMO

A carbon microtube aerogel (CMA) with hydrophobicity, strong adsorption capacity, and superb recyclability was obtained by a feasible approach with economical raw material, such as kapok fiber. The CMA possesses a great adsorption capacity of 78-348 times its weight. Attributed to its outstanding thermal stability and excellent mechanical properties, the CMA can be used for many cycles of distillation, squeezing, and combustion without degradation, which suggests a potential practical application in oil-water separation. In addition, the adsorption capacity still retained 98% by distillation, 97% by squeezing, and 90% by combustion after 10 cycles. Therefore, the obtained CMA has a broad prospect as an economical, efficient, and environmentally friendly adsorbent.

16.
J Colloid Interface Sci ; 560: 795-801, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31711662

RESUMO

Super-amphiphilic (highly oleophilic and hydrophilic) materials have attracted tremendous interest for fundamental research and potential applications, owing to their unique affinity for both oil and water. In this work, a novel super-amphiphilic porous polycaprolactone (PCL) was fabricated via an efficient and eco-friendly method, in which stearic acid (SA) was used as both a porogen and a dopant precursor. The porous PCL had an interconnected hierarchical pore structure and was capable of absorbing oil and water rapidly. The complementary cooperation of the oleophilic and hydrophilic domains on the pore surface induced the amphiphilicity, while the capillary forces caused a wicking action. The synergy of the two effects gave rise to the super-wetting property. The special amphiphilic feature of the porous PCL had a positive effect on its biocompatibility and the material can be considered as a promising candidate for tissue engineering applications.


Assuntos
Materiais Biocompatíveis/síntese química , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/citologia , Teste de Materiais , Poliésteres/síntese química , Ácidos Esteáricos/química , Materiais Biocompatíveis/farmacologia , Adesão Celular , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Poliésteres/farmacologia , Porosidade , Molhabilidade
17.
Angew Chem Int Ed Engl ; 59(8): 3033-3037, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31826317

RESUMO

The electrochemical CO2 reduction reaction (CO2 RR) to yield synthesis gas (syngas, CO and H2 ) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2 RR activity and the CO/H2 ratio. To address this issue, nitrogen-doped carbon supported single-atom catalysts are designed as electrocatalysts to produce syngas from CO2 RR. While Co and Ni single-atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm-2 ) with CO/H2 ratios (0.23-2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single-atom configurations for the H2 and CO evolution. The results present a useful case on how non-precious transition metal species can maintain high CO2 RR activity with tunable CO/H2 ratios.

18.
ACS Nano ; 13(11): 12969-12979, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31702132

RESUMO

Electrocatalysts are one of the most important parts for oxygen evolution reaction (OER) to overcome the sluggish kinetics. Herein, amorphous Fe-Ni-P-B-O (FNPBO) nanocages as efficient OER catalysts are synthesized by a simple low-cost and scalable method at room temperature. The samples are chemically stable, in clear contrast to reported unstable or even pyrophoric boride samples. The Fe/Ni ratio of the FNPBO nanocages can be continuously adjusted to optimize the OER catalytic performance. The FNPBO nanocages composed of multicomponent elements can weaken the metal-metal bonds, thus rearranging the electron density around the catalytic metal atom centers and reducing the energy barrier for intermediate formation. Hence the optimized FNPBO (Fe6.4Ni16.1P12.9B4.3O60.2) catalyst shows superior intrinsic electrocatalytic activity for OER. The low overpotential to afford the current density of 10 mA cm-2 (236 mV), the small Tafel slope (39 mV dec-1), and the high specific current density (26.44 mA cm-2) at a given overpotential of 300 mV make a sharp contrast to state-of-the-art RuO2 (327 mV, 136 mV dec-1, and 0.028 mA cm-2, respectively).

19.
ACS Nano ; 13(10): 11294-11302, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31560512

RESUMO

g-C3N4 is a promising visible-light-driven photocatalyst for H2 evolution reaction; however, the achievement of the high photocatalytic performance is primarily limited by the low separation efficiency of the photogenerated charge carriers and partly restricted by the slow kinetics of charge transfer. 2D g-C3N4 can significantly improve the charge generation, transfer, and separation efficiencies. The 2D g-C3N4-based Z-scheme heterostructure can further enhance the charge-carrier separation and simultaneously increase the redox ability, thereby further boosting the photocatalytic performance. Here we report a transition-metal-oxide (TMO)-mediated subtractive manufacturing process toward the large-scale synthesis of 2D g-C3N4 and the simultaneous formation of a 2D/2D TMO/g-C3N4 Z-scheme heterojunction. The TMOs serve as catalysts to facilitate the hydrolysis reaction of the bulk g-C3N4 in the presence of moist air, forming 2D g-C3N4. The resulting 2D/2D TMO/g-C3N4 catalysts, in particular, 2D/2D Co3O4/g-C3N4, exhibit high-efficiency and high-yield photocatalytic H2 evolution due to the suppression of electron-hole pair recombination and enhanced redox ability. The 2D/2D Co3O4/g-C3N4 photocatalyzes the H2 evolution with a rate of ∼370 µmol h-1 within λ > 400 nm. The external quantum efficiency of 2D/2D Co3O4/g-C3N4 at λ = 405 nm reaches 53.6%, which is among the highest values for g-C3N4-based catalysts.

20.
ACS Nano ; 13(10): 11733-11740, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31525961

RESUMO

Molybdenum disulfide (MoS2) has attracted much attention as a promising alternative to Pt-based catalysts for highly efficient hydrogen generation. However, it suffers sluggish kinetics for driving the hydrogen evolution reaction (HER) process because of inert basal planes, especially in alkaline solution. Here, we show a combination of heteroatom doping and phase transformation strategies to engineer the in-plane structure of MoS2, that trigger their catalytic activities. Systematic characterizations are performed with advanced aberration-corrected microscopy and X-ray techniques, indicating that an as-designed MoS2 catalyst has a distorted zigzag-chain superlattice in metallic phase, while its in-plane structure was engineered via the incorporation of cobalt and oxygen species. The optimal Co, O dual-doped metallic phase molybdenum disulfide (1T-MoS2) electrocatalyst shows a significantly enhanced HER activity with a low overpotential of 113 mV at 10 mA cm-2 and corresponding small Tafel slope of 50 mV dec-1, accompanied by the robust stability in alkaline media. The calculated turnover frequency is higher than 6.65 H2 s-1 at an overpotential of 200 mV. More in-depth insights from the first-principle calculations illustrate that the water dissociation as a rate-determining step was largely accelerated by the in-plane Co-O-Mo species and fast electron transfer of the catalyst. Benefiting from ingenious design and fine identifications, this work provides a fundamental understanding of the relationships among heteroatom doping, phase transformation, and performance for MoS2-based catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA